干细胞治疗干性黄斑病变(黄斑变性的治疗新方法干细胞)
本文目录一览:
- 1、干细胞黄斑变性上市时间
- 2、isei日本干细胞:老年黄斑变性是一种可导致失明的储存自己的免疫细胞眼疾,原因是?
- 3、黄斑变性最有效什么治疗方法
- 4、干细胞能够治愈哪些疾病?
干细胞黄斑变性上市时间
2023年7月1日。干细胞疗法是近年来国内外治疗老年性黄斑变性做的新探索,胚胎干细胞是人体的各个部位组织和器官的细胞,这种疗法就是将坏掉的细胞进行移植替换,国内医疗机构正加快该领域研发,发布声明称预计2023年7月1日上市。
isei日本干细胞:老年黄斑变性是一种可导致失明的眼疾,原因是?
为了全国最大的免疫细胞存储为未来做好准备,了解导致老年性黄斑变性(AMD)发展的因素很重要。 毕竟,它是日本人口中第四大最常见的视力障碍原因,也是60岁及以上人群的主要失明原因。
它是日本人口中视觉障碍的第四大原因,也是60岁及以上人群的主要致盲原因。 近年来,病人的数量一直在增加。
静冈县立滨松医院(Seirei Hamamatsu Hospital)眼科主任Akira Ohana是治疗和预防老年性黄斑变性(AMD)和其他形式的玻璃体视网膜疾病的主要专家,他说,在光环境和饮食习惯发生重大变化的情况下,老龄化正在进展,我借记卡的利息是多少们需要有意识地关心我们的眼睛健康,以保持我们一生的视觉功能。
在他的新书中,根据他自己的临床经验和临床研究的结果,Ohana向中年人和老年黄斑变性患者解释了什么是这种疾病,以及如何治疗和预防。 根据他自己的临床经验和临床研究的结果,他从他的新书《老年性黄斑变性:最新的治疗和预防手册》(CCC Media House)中摘录了三部分内容。
这是该系列的第三篇文章。
近年来,白内障、青光眼和失明在日本呈上升趋势,其原因是什么?
第二部分:男性的风险比女性高。 导致AMD的原因是什么?光环境是如何导致眼睛的寿命终结的?
AMD(年龄相关性黄斑变性)没有单一的原因。
AMD是一种 "多因素疾病",意味着它是由多种因素共同造成的。 要为未来做好准备,重要的是要知道导致AMD的因素,所以让我们一个一个地看一下。
身体随着年龄的增长而变得生锈。
衰老是已达到成熟期的细胞和组织逐渐减弱并最终达到其生命终点的过程。 其中一个机制是,细胞在代谢活动中使用的一些氧气变成了活性氧(坏氧),从而损害(氧化)了细胞和组织。
这被称为 "氧化应激",有时被称为 "老化是由于活性氧引起的氧化应激导致的身体生锈"。 这种氧化压力与AMD的发展密切相关。
氧化应激损害光感受器
光感受器细胞需要大量的能量来将光刺激转换成电信号。 在清醒状态下,感光细胞不停地工作,由于其高代谢,需要大量的氧气。
这就是为什么在身体的任何部位中,视网膜的氧气浓度最高。 这意味着视网膜比身体的任何其他部位更容易产生活性氧。
吸收光线的光感受器色素也是已知的ROS来源,废物脂褐素也是如此,它在视网膜色素上皮细胞中积累,是ROS的强大来源。
ROS具有氧化事物的能力。 视网膜的感光细胞含有大量容易氧化的不饱和脂肪酸,如二十二碳六烯酸(DHA)和二十碳五烯酸(EPA),它们被ROS氧化,形成脂质自由基(脂肪氧化过程中产生的中间体)。
麻烦的是,一旦形成脂质自由基,它们会引发其他脂质的连锁反应,产生大量的脂质过氧化物。 脂质过氧化物可以损害细胞膜和组件,导致光感受器细胞和视网膜色素上皮细胞的损害和退化。 这是导致AMD的一个主要因素。
除了防止作为活性氧(ROS)来源的脂褐素的积累外,还可能通过减少光量来预防AMD,因为光是用于将氧转化为ROS的能量来源。
遗传学并非不重要
所谓的遗传病是指由于拥有特定的变异基因而引起的疾病。 在有关新冠病毒的新闻中经常听到 "变异 "一词,例如通过 "三角洲变异 "等短语。
简而言之,它是一种与大多数人原本拥有的基因不同的基因。 突变基因通常由父母传给孩子。
你可能熟悉 "显性 "和 "隐性 "两个术语。 简单地说,如果父母中只有一人携带变异基因,那么这种疾病就是显性的,如果父母都携带变异基因,就是隐性的。
眼科领域中一个著名的遗传病是 "视网膜色素变性"。 到目前为止,已经发现了引起这种疾病的约100种基因变异,日本人中每3400人到8000人中就有一名患者。
遗传的方式因变异基因的种类而异,大多是隐性遗传,但也有罕见的孤发病例,家系内没有疾病的情况。
AMD不是一种遗传性疾病,因为没有变异的基因与该疾病直接相关。 然而,它与遗传学并非完全无关,有容易得AMD的人,也有不容易得AMD的人。
事实上,有几个易感基因已被确认与AMD有关,而你所拥有的易感基因类型决定了你是否对该疾病易感。
典型的易感基因包括CFH(补体因子H)和ARMS2/HTRA1(年龄相关性黄斑病易感性2/高温要求A-1)。
吸烟者患这种疾病的可能性是其两倍以上。
使人们更易受影响的基因是什么?
你可能听说过经常使用 "炎症 "这个词。 例如,当你割伤手指时,伤口会变得红、肿、热和痛。 这是因为白细胞来到伤口,产生抗体并吞噬病菌本身,杀死它们并清理受损组织以促进组织修复。
这被称为 "炎症反应"。 被称为 "补体 "的蛋白质协助这种反应,并帮助调节免疫系统。 当补体正常工作时,炎症得到良好控制,组织得到修复。
有许多类型的补体(蛋白质)和许多调节它们的因素,包括前面提到的易感基因CFH。
CFH蛋白的类型和表达是由基因决定的。 大多数人有相同的基因,但有些人有不同的基因。 这些个体差异被称为 "遗传多态性",对于每个基因,我们大约知道有不同基因的人口比例。
CFH多态性之一是CFH Y402H,2005年有报道称有这种多态性的人更有可能患AMD。
在有CFH Y402H多态性的人中,CFH蛋白中的第402个氨基酸从酪氨酸(Tyr)变为组氨酸(His),导致CFH蛋白的功能降低。 这意味着CFH蛋白不能减少炎症,从而导致慢性症状。
换句话说,拥有CFH的多态性会增加炎症的风险并加速AMD的发展,否则这将由其他因素引起。
另一方面,ARMS2蛋白存在于光感受器内段的线粒体中,但具有ARMS2多态性的人的线粒体中没有这种蛋白,这可能与AMD的发展有关。
吸烟者罹患该病的可能性比其他人高一倍以上
一些流行病学研究表明,吸烟是发展AMD的一个有力因素。 在久山的研究中,每天吸烟10-19支的人在5年内AMD的发病率比不吸烟的人高2.21倍,而每天吸烟20支以上的人则高3.32倍。
在日本,男性AMD的发病率高于女性的原因之一被认为是男性的高吸烟率。
动脉硬化是另一个加重的因素。
被称为 "代谢综合征 "的全身性异常,如高血压、动脉硬化和异常的脂质代谢,可以促进AMD的发展并使其恶化。 这些阻碍了眼睛里的血液流动,导致视网膜缺氧,并使其更容易从新血管中出血。
事实也表明,患有AMD的人更有可能发生心肌梗塞或中风,所以代谢综合征对你的眼睛和身体都不好。
饮食与此有很大关系
高血压、动脉硬化和脂质代谢异常都与饮食密切相关。
此外,视网膜含有一种黄色的色素,称为黄斑色素,它可以保护光感受器细胞免受氧化压力。 黄斑色素是由饮食中的类胡萝卜素构成的,人们认为饮食中缺乏类胡萝卜素可能是该疾病发展的一个因素。
干细胞治疗带来治疗希望
干细胞是一种具有再生分化功能的细胞,而黄斑变性的本质,就是在视力结构中缺失了这部分细胞,或这部分细胞发生萎缩所致。
干细胞能够替换这些老化和缺失的细胞,来实现恢复黄斑变性患者视力。
治疗原理很简单,首先通过运用干细胞,将干细胞分化为成熟的成体视网膜色素上皮(RPE),正是这部分患者所缺失的细胞类型,然后在实验室的培养皿中培养成RPE,把它们移植在一种很薄的聚合物上,让细胞被携带上去,更方便植入眼睛。
当细胞达到受损部位后,就会发挥分化和再生功能,重新修复,再造新的细胞,从而恢复视力。
“年龄相关性黄斑变性,如果早期发现并进行适当的治疗,绝对不是会导致失明的可怕疾病。 来我这里治疗的患者,很多都没有注意到视野的扭曲,而是在症状恶化了很多之后再来就诊。 为了不变成这样,也要时常一只眼睛确认观察方法,如果直线看起来扭曲,或者左右眼看起来不一样,希望尽快去眼科接受检查。 今后治疗方法也会不断进步,所以不要放弃,希望大家抱着希望接受治疗。”
黄斑变性最有效什么治疗方法
玻璃体腔内注射抗血管内皮生长因子(VEGF)药物,是目前治疗眼底病一线的治疗方法,就是往眼睛打针,可有效抑制新生血管生成,减少血管渗漏,消除组织水肿,从而达到改善视力的目的。
黄斑区(决定视力好坏的地方)新生血管的生长、出血和渗出犹如“杂草丛生”,血管内皮生长因子(VEGF)能促进新生血管生长,因此抗VEGF药物从源头上消除VEGF,对新生血管进行“斩草除根”,从而保护黄斑功能。
目前临床常用的抗VEGF药物包括单克隆抗体(雷珠单抗)和融合蛋白类(阿柏西普、康柏西普)
打针频率
第一步强化治疗消病灶:
每月1针,连续每月打针,将视力提升到最高点
湿性老年性黄斑变性/脉络膜新生血管:3针;
糖尿病黄斑水肿/视网膜静脉阻塞:5针+
注意:此阶段针数必打!不然前面画的钱和时间都是白费!!而且要连续打!
第二步巩固治疗防复发:
第一年月月复查OCT,一旦复发及时打针,稳定视力。
3年治疗针数跟着打,光明触手可及:
湿性老年性黄斑变性和脉络膜新生血管5/3/2
糖尿病性黄斑水肿8/4/3
视网膜中央静脉阻塞9/4/3
视网膜分支静脉阻塞8/2/2
每月定期OCT检查
视力检查,确定视力变化
OCT检查,及时发现黄斑水肿的变化。较靠患者自我感知视觉变化更为准确,便于及时治疗。
眼底荧光血管造影,及时发现是否有新生血管的风险
定期随访,及时治疗,可以争取最佳视力
治疗效果
请点击输入图片描述
wAMD:湿性年龄相关性黄斑变性,眼底病的一种
使用抗VEGF治疗后,wAMD患者的视力可有效改善,坚持多次抗VEGF治疗后视力改善更佳显著。
干细胞能够治愈哪些疾病?
您好:干细胞又被称为“万能细胞”,因为能够不断分裂,并分化成任何类型的细胞而得名。在医学上,利用干细胞的这一特性,已经广泛的应用在了各种疾病的治疗中。其中最火热研究方向是将人体的体细胞通过技术手段诱导多能干细胞(ipsCs),这不仅避免了伦理争论,应用范围也更广。
那么干细胞到底能在哪些用途上发光发热呢?5月2日,一篇发表在《NEJM》上的综述文献为了我们详细说明了干细胞在皮肤、心脏、眼睛、骨骼肌、神经组织、胰腺以及血液中的重要作用。
皮肤:大疱性表皮松解症、烧伤
改进后的干细胞治疗现在已经可以治疗一些皮肤遗传病,其中最主要的便是大疱性表皮松解症。
大疱性表皮松解症患者的皮肤在受到轻微摩擦或者碰撞后就会出现水疱和血疱,而这种情况可能发生在四肢和身体任何部分,严重时还会导致指甲脱落等症状。
细胞治疗联合自体角质形成干细胞基因替代治疗修复表皮
2017年时,著名学术期刊《Nature》就曾报道了一例利用转基因干细胞成功治疗一个年仅7岁的大疱性表皮松解症男孩的案例。男孩身上80%的皮肤都植入了经基因工程改造后的干细胞。
不仅如此,目前研究人员们也在对干细胞进行进一步的研究,希望能够改进并治疗烧伤患者的损伤皮肤。
干细胞的种类
血液:肿瘤治疗
红细胞、血小板、T细胞以及造血干细胞已经成为从多能干细胞中衍生出的最受欢迎的细胞产物。红细胞和血小板可以解决患者输血时遇到的血液数量不够的问题。而由多能干细胞衍生出的T细胞则在肿瘤治疗领域发挥着重要的作用。
由多能干细胞分化成的各类免疫细胞及红细胞、血小板
在癌症治疗领域,研究人员也希望通过干细胞衍生出的T细胞制备成CAR-T细胞疗法。干细胞转化的CAR-T虽然能够在一定程度上降低成本,但是如何避免免疫排斥反应,目前来说仍是一个非常大的挑战。
总之,对于癌症治疗,干细胞仍处于理论研究阶段,需要对人体机制以及免疫系统做进一步深入的了解和研究。
心脏:心肌梗塞、药物研发
说到心脏方面的疾病,最常见也最容易危及生命的便是心肌梗塞。由于心肌细胞的再生能力非常有限,同时,心脏作为人体最重要的器官之一,移植干细胞到心脏,具有非常大的难度和挑战性。
但是研究人员并没有放弃干细胞在心脏领域的应用,早在2015年时,就有报道称,能够将人体胚胎干细胞移植至其他心肌梗死的动物体内,并重建心肌。但是这类的研究并不是十分顺利,当移植到心肌时,将产生心律失常甚至无法正常工作的风险。
将胚胎干细胞来源的心肌细胞注射入心肌梗死的动物模型中
总之,利用胚胎干细胞以及诱导多能干细胞移植心肌细胞的技术还不够成熟,但研究人员也一直在致力增强移植细胞的功能。而目前,干细胞在心肌细胞内的主要应用仍是被用于研究心脏疾病的发病机制以及筛选心脏药物。
眼睛:年龄相关性黄斑病变
人体胚胎干细胞以及多能干细胞的无限增殖能力使得它能够治疗早期与年龄相关的黄斑病变。
在我们的眼睛中,存在着一种视网膜色素上皮细胞,而在年龄相关性的黄斑病变中,视网膜色素上皮细胞将逐渐丧失功能,并导致黄斑中的光感受器死亡,影响视力甚至最终形成失明。
修复视网膜色素上皮细胞
目前,通过利用人体胚胎干细胞分化成视网膜色素上皮细胞来恢复视力的研究已经在美国、中国、以色列、英国、韩国和日本进行了1期临床试验。
除了修复视网膜色素上皮细胞外,干细胞也在角膜和晶状体的修复中取得了显著的进展。
修复受损的角膜
2015年,已有制备的可以修复因物理因素等造成角膜和视力损坏的成人组织特异性角膜缘干细胞获得欧洲药品管理局的上市许可。
骨骼肌:肌肉萎缩
骨骼肌大约占体重的40%,然而随着年龄的增加,骨骼肌的质量和强度会逐渐下降。除此之外,遗传性的肌肉萎缩症也会使我们行动不便。针对这些,干细胞疗法就可以很好的治疗因衰老或疾病引起的肌肉萎缩。
成人肌肉干细胞具有强大的再生潜能,可以被触发自我更新,并修复损伤。但是对于成人肌肉干细胞的培养却不是那么容易,其次,由于培养的困难,导致肌肉干细胞的供应不足,限制了临床应用。
肌肉组织的修复
为了解决这种问题,研究人员采用了刺激原位组织驻留的肌肉干细胞,省去在体外进行细胞分离、扩增的过程。目前,这种方法已经在小鼠身上进行了试验。
神经组织:帕金森
在大多数哺乳动物中,大脑的大部分发育在子宫内就已经完成了,只有一小部分神经组织在儿童期和成年期持续发展。因此,由于神经元的损伤造成的疾病将导致永久性的残疾,所以如何利用多能干细胞来修复神经组织是干细胞疗法的热门研究问题。
经过数十年的研究与经验积累,我们发现利用多能干细胞衍生成的多巴胺能神经元可以治疗帕金森病。
帕金森病的神经组织修复
除此之外,使用其他干细胞治疗神经系统疾病的各项研究也都在积极开展中,其中最具有有挑战性的便是脊髓损伤,虽然神经干细胞的移植已经成功促进了神经连接和轴突的生长,但是还需要更多的数据来证明这种技术真的能够完全修复脊髓损伤。
胰腺:糖尿病
糖尿病已经成为了中老年群体的常见病症,其病因主要是胰岛β细胞的衰竭,从而导致胰岛素的相对缺乏。针对这一点,研究人员尝试使用胚胎干细胞衍生成能够产生胰岛素分泌的β细胞,目前已经开展了动物和体外试验。
一旦成功,糖尿病患者再也不需要每天多次的监测自己的血糖水平。因为由干细胞衍生的β细胞可以自动监测体内血糖水平,将其控制在一个合理的范围内。
干细胞疗法是当今医学研究最前沿也是最热门的方向之一,发展迅猛,也取得了令人兴奋的成果。虽然在应用上还存着各种各样的问题,如安全性和医学伦理等方面的问题。但是任何事物的发展都将遇到挑战和阻碍,我们仍然相信干细胞治疗将克服困难,成为可靠的治疗方式。
相关文章
发表评论
评论列表
- 这篇文章还没有收到评论,赶紧来抢沙发吧~