冰活体干细胞代加工(干细胞 活细胞)
有关干细胞
细胞简介
英文名:CELL 在文章中简称C
细胞是由膜包围着含有细胞核(或拟核)的中关村生命科学院上地北区原生质所组成, 是生物体的结构和功能的基本单位, 也是生命活动的基本单位。细胞能够通过分裂而增殖,是生物体个体发育和系统发育的基础。细胞或是独立的作为生命单位, 或是多个细胞组成细胞群体或组织、或器官和机体;细胞还能够进行分裂和繁殖;细胞是遗传的基本单位,并具有遗传的全能性。
除病毒外的所有生物,都由细胞构成。自然界中既有单细胞生物,也有多细胞生物。细胞是生物体基本的结构和功能单位。细胞是生物界中,不可缺的一部分。
细胞的结构
在光学显微镜下 观察植物的细胞,可以看到它的结构分为下列四个部分
细胞壁
位于植物细胞的最外层,是一层透明的薄壁。它主要是由纤维素组成的,孔隙较大,物质分子可以自由透过。细胞壁对细胞起着支持和保护的作用。
细胞膜
细胞壁的内侧紧贴着一层极薄的膜,叫做细胞膜。这层由蛋白质分子和脂类分子组成的薄膜,水和氧气等小分子物质能够自由通过,而某些离子和大分子物质则不能自由通过,因此,它除了体龄抗衰老管理中心起着保护细胞内部的作用以外,还具有控制物质进出细胞的作用:既不让有用物质任意地渗出细胞,也不让有害物质轻易地进入细胞。
细胞膜在光学显微镜下不易分辨。用电子显微镜观察,可以知道细胞膜主要由蛋白质分子和脂类分子构成。在细胞膜的中间,是磷脂双分子层,这是细胞膜的基本骨架。在磷脂双分子层的外侧和内侧,有许多球形的蛋白质分子,它们以不同深度镶嵌在磷脂分子层中,或者覆盖在磷脂分子层的表面。这些磷脂分子和蛋白质分子大都是可以流动的,可以说,细胞膜具有一定的流动性。细胞膜的这种结构特点,对于它完成各种生理功能是非常重要的。
细胞质
细胞膜包着的黏稠透明的物质,叫做细胞质。在细胞质中还可看到一些带折光性的颗粒,这些颗粒多数具有一定的结构和功能,类似生物体的各种器官,因此叫做细胞器。例如,在绿色植物的叶肉细胞中,能看到许多绿色的颗粒,这就是一种细胞器,叫做叶绿体。绿色植物的光合作用就是在叶绿体中进行的。在细胞质中,往往还能看到一个或几个液泡,其中充满着液体,叫做细胞液。在成熟的植物细胞中,液泡合并为一个中央液泡,其体积占去整个细胞的大半。
细胞质不是凝固静止的,而是缓缓地运动着的。在只具有一个中央液泡的细胞内,细胞质往往围绕液泡循环流动,这样便促进了细胞内物质的转运,也加强了细胞器之间的相互联系。细胞质运动是一种消耗能量的生命现象。细胞的生命活动越旺盛,细胞质流动越快,反之,则越慢。细胞死亡后,其细胞质的流动也就停止了。
除叶绿体外,植物细胞中还有一些细胞器,它们具有不同的结构,执行着不同的功能,共同完成细胞的生命活动。这些细胞器的结构需用电子显微镜观察。在电镜下观察到的细胞结构称为亚显微结构。
线粒体
呈线状、粒状,故名。在线粒体上,有很多种与呼吸作用有关的颗粒,即多种呼吸酶。它是细胞进行呼吸作用的场所,通过呼吸作用,将有机物氧化分解,并释放能量,供细胞的生命活动所需,所以有人称线粒体为细胞的“发电站”或“动力工厂”。
叶绿体
叶绿体是绿色植物细胞中重要的细胞器,其主要功能是进行光合作用。叶绿体由双层膜、类囊体和基质三部分构成。类囊体是一种扁平的小囊状结构,在类囊体薄膜上,有进行光合作用必需的色素和酶。许多类囊体叠合而成基粒。基粒之间充满着基质,其中含有与光合作用有关的酶。基质中还含有DNA。
内质网
内质网是细胞质中由膜构成的网状管道系统广泛的分布在细胞质基质内。它与细胞膜相通连,对细胞内蛋白质等物质的合成和运输起着重要作用。
内质网有两种:一种是表面光滑的;另一种是上面附着许多小颗粒状的。内质网增大了细胞内的膜面积,膜上附着这许多酶,为细胞内各种化学反应的正常进行提供了有利条件。
高尔基体
高尔基体普遍存在于植物细胞和动物细胞中。一般认为,细胞中的高尔基体与细胞分泌物的形成有关,高尔基体本身没有合成蛋白质的功能,但可以对蛋白质进行加工和转运。植物细胞分裂时,高尔基体与细胞壁的形成有关。
核糖体
核糖体是椭球形的粒状小体,有些附着在内质网膜的外表面,有些游离在细胞质基质中,是合成蛋白质的重要基地。
中心体
中心体存在于动物细胞和某些低等植物细胞中,因为它的位置靠近细胞核,所以叫中心体。每个中心体由两个互相垂直排列的中心粒及其周围的物质组成。 动物细胞的中心体与丝分裂有密切关系。
液泡
液泡是植物细胞中的泡状结构。成熟的植物细胞中的液泡很大,可占整个细胞体积的90%。
液泡的表面有液泡膜。液泡内有细胞液,其中含有糖类、无机盐、色素和蛋白质等物质,可以达到很高的浓度。因此,它对细胞内的环境起着调节作用,可以使细胞保持一定的渗透压,保持膨胀的状态。
溶酶体 溶酶体是细胞内具有单层膜囊状结构的细胞器。其内含有很多种水解酶类,能够分解很多物质。
细胞核 细胞质里含有一个近似球形的细胞核,是由更加黏稠的物质构成的。细胞核通常位于细胞的中央,成熟的植物细胞的细胞核,往往被中央液泡推挤到细胞的边缘。细胞核中有一种物质,易被洋红、苏木精等碱性染料染成深色,叫做染色质。生物体用于传种接代的物质即遗传物质,就在染色质上。当细胞进行有丝分裂时,染色质就变化成染色体。
多数细胞只有一个细胞核,有些细胞含有两个或多个细胞核,如肌细胞、肝细胞等。细胞核可分为核膜、染色质、核液和核仁四部分。核膜与内质网相通连,染色质位于核膜与核仁之间。染色质主要由蛋白质和DNA组成。DNA是一种有机物大分子,又叫脱氧核糖核酸,是生物的遗传物质。在有丝分裂时,染色体复制,DNA也随之复制为两份,平均分配到两个子细胞中,使得后代细胞染色体数目恒定,从而保证了后代遗传特性的稳定。
还有RNA,RNA是DNA在复制时的单链,它传递蛋白质,被称为DNA的信使。
由膜包围着含有细胞核(或拟核)的原生质所组成, 是生物体的结构和功能的基本单位, 也是生命活动的基本单位。细胞能够通过分裂而增殖,是生物体个体发育和系统发育的基础。细胞或是独立的作为生命单位, 或是多个细胞组成细胞群体或组织、或器官和机体;细胞还能够进行分裂和繁殖;细胞是遗传的基本单位,并具有遗传的全能性(植物)
动物细胞核有全能性
细胞学是研究细胞结构和功能的生物学分支学科。
细胞是组成有机体的形态和功能的基本单位,自身又是由许多部分构成的。所以关于细胞结构的研究不仅要知道它是由哪些部分构成的,而且要进一步搞清每个部分的组成。相应地,关于功能不仅要知道细胞作为一个整体的功能,而且要了解各个部分在功能上的相互关系。
有机体的生理功能和一切生命现象都是以细胞为基础表达的。因此,不论对有机体的遗传、发育以及生理机能的了解,还是对于作为医疗基础的病理学、药理学等以及农业的育种等,细胞学都至关重要。
绝大多数细胞都非常微小,超出人的视力极限,观察细胞必须用显微镜。所以1677年列文·虎克用自己制造的简单显微镜观察到动物的“精虫”时,并不知道这是一个细胞。细胞一词是1665年罗伯特·胡克在观察软木塞的切片时看到软木中含有一个个小室而以之命名的。其实这些小室并不是活的结构,而是细胞壁所构成的空隙,但细胞这个名词就此被沿用下来。
在细胞学的启蒙时期,用简单显微镜虽然也观察到许多细小的物体——例如细菌、纤毛虫等,但目的主要是观察一些发育现象,例如蝴蝶的变态,精子和卵子的结构等。直到1827年贝尔发现哺乳类的卵子,才开始对细胞本身进行认真的观察。在这前后研制出的无色差物镜,引进洋红和苏木精作为使细胞核着色的染料以及切片机和切片技术的初创,都为对细胞进行更精细的观察创造了有利条件。
对于研究细胞起了巨大推动作用的是德国生物学家施莱登和施旺。前者在1838年描述了细胞是在一种粘液状的母质中,经过一种像是结晶样的过程产生的,并且把植物看作细胞的共同体。在他的启发下施万坚信动、植物都是由细胞构成的,并指出二者在结构和生长中的一致性,于1839年提出了细胞学说。
与此同时,捷克动物生理学家浦肯野提出原生质的概念;德国动物学家西博尔德断定原生动物都是单细胞的。德国病理学家菲尔肖在研究结缔组织的基础上提出“一切细胞来自细胞”的名言,并且创立了细胞病理学。
从19世纪中期到20世纪初,关于细胞结构尤其是细胞核的研究,有了长足的进展。德国植物学家施特拉斯布格1875年首先叙述了植物细胞中的着色物体,而且断定同种植物各自有一定数目的着色物体;1880年巴拉涅茨基描述了着色物体的螺旋状结构,翌年普菲茨纳发现了染色粒,直到1888年瓦尔代尔才把核中的着色物体正式命名为染色体。德国学者亨金1891年在昆虫的精细胞中观察到 X染色体,1902年史蒂文斯、威尔逊等发观了 Y染色体。
德国植物学家霍夫迈斯特1867年对植物,施奈德1873年对动物,分别比较详细地叙述了间接分裂;德国细胞学家弗勒明1882年在发现了染色体的纵分裂之后提出了有丝分裂这一名称以代替间接分裂,霍伊泽尔描述了在间接分裂时的染色体分布;在他之后,施特拉斯布格把有丝分裂划分为直到现在还通用的前期、中期、后期、末期;他和其他学者还在植物中观察到减数分裂,经过进一步研究终于区别出单倍体和双倍体染色体数目。
对细胞质结构的认识落后于对细胞核或染色体的认识,这种情况长期末得到改善。尤其是20世纪早期之后,随着细胞遗传学研究分离、重组、连锁、交换等遗传现象的染色体基础,对染色体的了解更深入了。但是与此同时,关于细胞质,除去结合着细胞生理对它的某些生理功能有所了解之外,对结构的认识并没有多大进展。这种情况直至20世纪40年代后,电子显微镜得到广泛使用,标本的包埋、切片一套技术逐渐完善,才有了很大改变。
1900年重新发现孟德尔的研究成就后,遗传学研究有力地推动了细胞学的进展。美国遗传学家和胚胎学家摩尔根研究果蝇的遗传,发现偶尔出现的白眼个体总是雄性;结合已有的、关于性染色体的知识,解释了白眼雄性的出现,开始从细胞解释遗传现象,遗传因子可能位于染色体上。细胞学和遗传学联系起来,从遗传学得到定量的和生理的概念,从细胞学得到定性的、物质的和叙述的概念,逐步产生出细胞遗传学。
1920年美国细胞学家萨顿进一步指出遗传因子和染色体行为间的平行现象,必然意味着遗传因子位于染色体上,并且提到,如果两对因子位于同一染色体上,它们可能按照,也可能不按照孟德尔规律遗传,预示了连锁的概念,加深了关于成熟分裂尤其是关于染色体配对、染色体交换的研究。
此外,发现了辐射现象、温度能够引起果蝇突变之后,因突变的频率很高更有利于染色体的实验研究。辐射之后引起的各种突变,包括基因的移位、倒位及缺失等都司在染色体中找到依据。利用突变型与野生型杂交,并且对其后代进行统计处理可以推算出染色体的基因排列图。广泛开展的性染色体形态的研究,也为雌雄性别的决定找到细胞学的基础。
在20世纪40年代初期,其他学科的技术方法相继被用于细胞学的研究,开辟了新的局面,形成了一些新的领域。首先是电子显微镜的应用产生了超显微形态学。
比利时动物学家布拉谢从胚胎学的问题出发,利用专一的染色方法研究核酸在发育中的,意义。差不多与此同时,瑞典生化学家卡斯珀松根据各种物质对一定波长的吸收,创建了紫外线细胞分光光度计,来检测蛋白质、DNA和RNA这些物质在细胞中的存在。他们的工作引起人们对核酸在细胞生长和分化中的作用的重视。在他们工作的基础上发展起了细胞化学,研究细胞的化学组成,可以和形态学的研究相互补充,对细胞结构增加一些了解。
20世纪40年代开始逐渐开展了从生化方面研究细胞各部分的功能的工作,产生了生化细胞学。首先使用了匀浆——在适合的溶液中把细胞机械地磨碎——和差速离心的办法,除细胞核而外还可以得到线粒体、微粒体和透明质等几部分。对它们分别地进行研究了解到一些物质和酶的存在和分布以及某些代谢过程在什么部位进行。关于线粒体和微粒体这样的一些研究指出,许多基本的生化过程是在细胞质而不是在细胞核里进行的。这样的方法结合着深入的形态学研究导致对细胞中的过程有越来越深刻的了解。
虽然在20世纪30年代组织培养就有了较大的发展,但是只能培养组织块,还不能培养正常组织的单个细胞,而且还没有充分显示出它的重要性。利用培养的细胞可以研究许多在整体中无法研究的问题,例如细胞的营养、运动、行为、细胞问的相互关系等。几乎各种组织,包括某些无脊椎动物,都被培养过。
在良好的培养条件下从组织块长出的各种细胞,其生长情况不同。从形态上基本上可以分为三种类型,上皮、结缔组织和游走细胞。有时候培养细胞会显示正常组织在有机体中表现不出的特征,例如如果培养基中含有增强表面活性的物质,多种组织的细胞可以获得吞噬的能力。但是它们仍保持特有的性质和潜能,因为如果改变培养环境或者移回到动物体内原来的部位便仍可照原样生长。
值得一提的是在培养中的成纤维细胞的生长也受底质的影响。在一般情况下它们呈辐射状、漫无目的地从组织块长出。但是如果人工地使培养基处于一定方向的张力之下,或人工的在底质上制出痕迹,细胞就会沿张力的方向或沿着痕迹生长出去。这个现象也许可以用来解释在整体中结缔钼织和肌腱的功能适应——它们总是在张力的方向生长、分化。
可以看出对于细胞的研究,在使用电子显微镜后在亚显微结构方面的深入,以及在应用生化技术后在功能方面的深入,已经在为细胞生物学——在分子水平上研究细胞的生命现象——的形成创造了条件。所以在后来,在分子遗传学和分子生物学优异的成就的影响之下,细胞生物学这一新的学科很快地形成了。
一般细胞都很微小,只有在显微镜下才能看清它们的面貌。一般骨骼肌细胞长达1-40毫米.但是,也有长达1米以上的细胞。
神经解剖学家发现,在哺乳类动物的神经系统中,有些专管运动功能的神经元(也就是神经细胞),它的突起部分可以长达1米以上。它们的细胞体位于大脑皮层或脊髓灰质中,但它们的突起末端却可伸到很远的地方。位于大脑皮质的叫做锥体细胞,这种细胞有个很长的突起叫轴突。轴突是用来传递信息的通道,大脑下达的运动指令就是沿着这条线通过脑干到达脊髓。脊髓中接受大脑皮质下达指令的细胞叫脊髓前角运动神经元,它也有一个很长的轴突,这个轴突穿出锥管,沿着脊神经直达所支配的肌肉,将大脑的运动指令转变成肌肉运动的信号,肌肉就安大脑的意图运动。
细胞的结构与功能相一致。大脑皮层到脊髓、脊髓到肌肉的距离都很长,建立距离这么远的两部分之间联系的神经细胞必然有特定的结构,因而具有那样长的突起。而且,动物的个体越大,它的运动神经元也就越长。
动物细胞与植物细胞相比较,具有很多相似的地方,如动物细胞也具有细胞膜、细胞质、细胞核等结构。但是动物细胞与植物细胞又有一些重要的区别,如动物细胞的最外面是细胞膜,没有细胞壁;动物细胞的细胞质中不含叶绿体,也不形成中央液泡(图3-1-4)。
总之,不论是植物还是动物,都是由细胞构成的。细胞是生物体结构和功能的基本单位。
人体细胞
1. 人体最大的细胞是成熟的卵细胞(直径0.1毫米)。
2. 人体最小的细胞是淋巴细胞(直径6微米)。
3. 人体寿命最长的细胞是神经细胞。
4. 人体寿命最短的细胞是白细胞。
细胞的化学成分
组成细胞的基本元素是:O、C、H、N、Si、K、Ca、P、Mg,其中O、C、H、N四种元素占90%以上。细胞化学物质可分为两大类:无机物和有机物。在无机物中水是最主要的成分,约占细胞物质总含量的75%—80%。
一、水与无机盐
(一)水是原生质最基本的物质
水在细胞中不仅含量最大,而且由于它具有一些特有的物理化学属性,使其在生命起源和形成细胞有序结构方面起着关键的作用。可以说,没有水,就不会有生命。水在细胞中以两种形式存在:一种是游离水,约占95%;另一种是结合水,通过氢键或其他键同蛋白质结合,约占4%~5%。随着细胞的生长和衰老,细胞的含水量逐渐下降,但是活细胞的含水量不会低于75%。
水在细胞中的主要作用是,溶解无机物、调节温度、参加酶反应、参与物质代谢和形成细胞有序结构。水之所以具有这么多的重要功能是和水的特有属性分不开的。
1.水分子是偶极子
从化学结构上看,水分子似乎很简单,仅是由2个氢原子和1个氧原子构成(H2O)。然而水分子中的电荷分布是不对称的,一侧显正电性,另一侧显负电性,从而表现出电极性,是一个典型的偶极子(图3-31)。正由于水分子具有这一特性,它既可以同蛋白质中的正电荷结合,也可以同负电荷结合。蛋白质中每一个氨基酸平均可结合2.6个水分子。
由于水分子具有极性,产生静电作用,因而它是一些离子物质(如无机盐)的良好溶剂。
2.水分子间可形成氢键
由于水分子是偶极子,因而在水分子之间和水分子与其他极性分子间可建立弱作用力的氢键。在水中每一氧原子可与另两个水分子的氢原子形成两个氢键。氢键作用力很弱,因此分子间的氢键经常处于断开和重建的过程中。
3.水分子可解离为离子
水分子可解离为氢氧离子(OH-)和氢离子(H+)。在标准状况下总有少量水分子解离为离子,大约有107mol/L水分子解离,相当于每109个水分子中就有2个解离。但是水分子的电解并不稳定,总是处于分子与离子相互转化的动态平衡之中。
(二)无机盐
细胞中无机盐的含量很少,约占细胞总重的1%。盐在细胞中解离为离子,离子的浓度除了具有调节渗透压和维持酸碱平衡的作用外,还有许多重要的作用。
主要的阴离子有Cl—、PO4—和HCO3—,其中磷酸根离子在细胞代谢活动中最为重要:①在各类细胞的能量代谢中起着关键作用;②是核苷酸、磷脂、磷蛋白和磷酸化糖的组成成分;③调节酸碱平衡,对血液和组织液pH起缓冲作用。
主要的阳离子有:Na+、K+、Ca2+、Mg2+、Fe2+、Fe3+、Mn2+、Cu2+、Co2+、Mo2+。
二、细胞的有机分子
细胞中有机物达几千种之多,约占细胞干重的90%以上,它们主要由碳、氢、氧、氮等元素组成。有机物中主要由四大类分子所组成,即蛋白质、核酸、脂类和糖,这些分子约占细胞干重的90%以上。
(一)蛋白质
在生命活动中,蛋白质是一类极为重要的大分子,几乎各种生命活动无不与蛋白质的存在有关。蛋白质不仅是细胞的主要结构成分,而且更重要的是,生物专有的催化剂——酶是蛋白质,因此细胞的代谢活动离不开蛋白质。一个细胞中约含有104种蛋白质,分子的数量达1011个。
(二)核酸
核酸是生物遗传信息的载体分子,所有生物均含有核酸。核酸是由核苷酸单体聚合而成的大分子。核酸可分为核糖核酸RNA和脱氧核糖核酸两大类DNA。当温度上升到一定高度时,DNA双链即解离为单链,称为变性(denaturation)或熔解(melting),这一温度称为熔解温度(melting temperature,Tm)。碱基组成不同的DNA,熔解温度不一样,含G—C对(3条氢键)多的DNA,Tm高;含A—T对(2条氢键)多的,Tm低。当温度下降到一定温度以下,变性DNA的互补单链又可通过在配对碱基间形成氢键,恢复DNA的双螺旋结构,这一过程称为复性(renaturation)或退火(annealing)。
DNA有三种主要构象
B-DNA:为WatsonClick提出的右手螺旋模型,每圈螺旋10个碱基,螺旋扭角为36度,螺距34A,每个碱基对的螺旋上升值为3.4A,碱基倾角为-2度。
A-DNA:为右手螺旋,每圈螺旋10.9个碱基,螺旋扭角为33度,螺距32A,每个碱基对的螺旋上升值为2.9A,碱基倾角为13度。
Z-DNA:为左手螺旋,每圈螺旋12个碱基,螺旋扭角为-51度(G—C)和-9度(C—G),螺距46A,每个碱基对的螺旋上升值为3.5A(G—C)和4.1A(C—G),碱基倾角为9度。
(三)糖类
细胞中的糖类既有单糖,也有多糖。细胞中的单糖是作为能源以及与糖有关的化合物的原料存在。重要的单糖为五碳糖(戊糖)和六碳糖(己糖),其中最主要的五碳糖为核糖,最重要的六碳糖为葡萄糖。葡萄糖不仅是能量代谢的关键单糖,而且是构成多糖的主要单体。
多糖在细胞结构成分中占有主要的地位。细胞中的多糖基本上可分为两类:一类是营养储备多糖;另一类是结构多糖。作为食物储备的多糖主要有两种,在植物细胞中为淀粉(starch),在动物细胞中为糖原(glycogen)。在真核细胞中结构多糖主要有纤维素(cellulose)和几丁质(chitin)。
(四)脂类
脂类包括:脂肪酸、中性脂肪、类固醇、蜡、磷酸甘油酯、鞘脂、糖脂、类胡萝卜素等。脂类化合物难溶于水,而易溶于非极性有机溶剂。
1、中性脂肪(neutral fat)
①甘油酯:它是脂肪酸的羧基同甘油的羟基结合形成的甘油三酯(triglyceride)。甘油酯是动物和植物体内脂肪的主要贮存形式。当体内碳水化合物、蛋白质或脂类过剩时,即可转变成甘油酯贮存起来。甘油酯为能源物质,氧化时可比糖或蛋白质释放出高两倍的能量。营养缺乏时,就要动用甘油酯提供能量。
②蜡:脂肪酸同乙醇酯化形成蜡(如蜂蜡)。蜡的碳氢链很长,熔点要高于甘油酯。细胞中不含蜡质,但有的细胞可分泌蜡质。如:植物表皮细胞分泌的蜡膜;同翅目昆虫的蜡腺、如高等动物外耳道的耵聍腺。
2、磷脂
磷脂对细胞的结构和代谢至关重要,它是构成生物膜的基本成分,也是许多代谢途径的参与者。分为甘油磷脂和鞘磷脂两大类。
3、糖脂
糖脂也是构成细胞膜的成分,与细胞的识别和表面抗原性有关。
4、萜类和类固醇类
这两类化合物都是异戊二烯(isoptene)的衍生物,都不含脂肪酸。
生物中主要的萜类化合物有胡萝卜素和维生素A、E、K等。还有一种多萜醇磷酸酯,它是细胞质中糖基转移酶的载体。
类固醇类(steroids)化合物又称甾类化合物,其中胆固醇是构成膜的成分。另一些甾类化合物是激素类,如雌性激素、雄性激素、肾上腺激素等。
三、酶与生物催化剂
(一)酶
酶是蛋白质性的催化剂,主要作用是降低化学反应的活化能,增加了反应物分子越过活化能屏障和完成反应的概率。酶的作用机制是,在反应中酶与底物暂时结合,形成了酶——底物活化复合物。这种复合物对活化能的需求量低,因而在单位时间内复合物分子越过活化能屏障的数量就比单纯分子要多。反应完成后,酶分子迅即从酶——底物复合物中解脱出来。
酶的主要特点是:具有高效催化能力、高度特异性和可调性;要求适宜的pH和温度;只催化热力学允许的反应,对正负反应的均具有催化能力,实质上是能加速反应达到平衡的速度。
某些酶需要有一种非蛋白质性的辅因子(cofactor)结合才能具有活性。辅因子可以是一种复杂的有机分子,也可以是一种金属离子,或者二者兼有。完全的蛋白质——辅因子复合物称为全酶(holoenzyme)。全酶去掉辅因子,剩下的蛋白质部分称为脱辅基酶蛋白(apoenzyme)。
(二)RNA催化剂
T.Cech 1982发现四膜虫(Tetrahymena)rRNA的前体物能在没有任何蛋白质参与下进行自我加工,产生成熟的rRNA产物。这种加工方式称为自我剪接(self splicing)。后来又发现,这种剪下来的RNA内含子序列像酶一样,也具有催化活性。此RNA序列长约400个核苷酸,可褶叠成表面复杂的结构。它也能与另一RNA分子结合,将其在一定位点切割开,因而将这种具有催化活性的RNA序列称为核酶Ribozyme。后来陆续发现,具有催化活性的RNA不只存在于四膜虫,而是普遍存在于原核和真核生物中。一个典型的例子核糖体的肽基转移酶,过去一直认为催化肽链合成的是核糖体中蛋白质的作用,但事实上具有肽基转移酶活性和催化形成肽键的成分是RNA,而不是蛋白质,核糖体中的蛋白质只起支架作用。
冷冻螃蟹能吃吗?
阳澄湖大闸蟹冷冻了可以吃吗?怎么吃?对于吃货们来说,吃大闸蟹可不仅仅是品品鲜这样浅尝辄止,要吃自然得吃到尽兴,而真能吃得色香味俱佳,的确是要费一番心思的……那么正宗阳澄湖大闸蟹冷冻了可以吃吗?如果是煮熟了的阳澄湖大闸蟹冷冻了,那么再加热的情况下是可以吃的,但是口感肯定是没有第一次煮好的时候味道鲜美了,口味上会打些折扣,需要充分加热。若是鲜活的阳澄湖大闸蟹冷冻了,那就可能没有办法食用了。因为鲜活的阳澄湖大闸蟹冷冻之后会死去,正宗阳澄湖大闸蟹死去是不能食用的,会引起身体不适。下面一起来带领吃货们享受大闸蟹的口腹之旅。
阳澄湖大闸蟹可以这样做:
煮蟹法:洗净蟹后,置入盛满滚水的锅内,加大姜一块,猛火煮之。一般半斤以上的二十分钟,六两以下的十五分钟。
蒸蟹法:水烧至大滚时,将蟹肚朝天放入蒸笼中,上置洗净抹干之紫苏叶,蒸十五到二十分钟。
大闸蟹可以这样吃:
1、用蟹剪从后到前将蟹腿剪下。避开关节部分,从关节稍微靠前一点的地方下剪。
2、用蟹针将腿肉顶出,放在蟹碗里,点姜醋食之。
3、用蟹锤将放在蟹桌上的蟹螯轻轻敲松,剥开蟹壳用蟹针挑出其中的蟹肉。
4、用蟹锤对准蟹壳四周侧面轻轻敲打,将壳敲松。
5、用蟹针上带小叉子的一端将白色的蟹胶集中起来,放到蟹碗里,就可以吃了。
大闸蟹那些部位不能吃:
大闸蟹的胃、心脏、肚脐和鳃不能吃。
如何去除手上蟹味:
柠檬、牙膏、白酒、凉茶水加香菜、醋等家里常见的实物,取一小部分揉搓洗手,腥味即除。
吃蟹小窍门:
1、大闸蟹在8月少量上市, 9~12月是吃螃蟹最好的时候,最晚到1月初。
2、大闸蟹的个头,母4.0、公5.5两左右的味道最好。
3、大火蒸20分钟,关火后焖1分钟。
4、大闸蟹一般在10 的温度下保存,蟹会处于冬眠状态,不会瘦能保持肉质肥厚。另外,蟹膏处于一种半凝固的状态,因此蒸的时候一定要蒸够20分钟,才能将蟹里面的膏蒸熟。
冰冻的大闸蟹可以吃,但不建议吃。因为情况不清楚,假如是死蟹半死不活的蟹冰冻了,外表是看不出来的。
冰冻河鲜,就不是河鲜了,失去了“鲜”的本意。但在特别情况下,非得冻起来才能保存,否则只有丢掉,太可惜。所以说 冰冻河鲜是无奈的选择。特别是出产很多,怎么也卖不完,又不能回炉倒进放养池,也不能就那样搁着,更不会任其死了烂掉。怎么办?冻起来,比不上鲜蟹,但强过没有。
严格的说,河鲜里,黄鳝、泥鳅和老鳖死了不能吃,主要是这些东西死了就很快产生毒素,不仅仅味道变得难吃,还有中毒丢命的危险。所以,传统饮食习惯,严禁吃死鳖死鳝死泥鳅。螃蟹和这几样宝贝一个性质,应该的死了不要吃。
如今有了冷冻技术和设备,家家都能做来。我试过冻鲜鱼,活着收拾好了,用保鲜袋装起来,不要跑气,放冷冻室,零下二十几度的低温急冻了,做菜的时候拿出来自然解冻,还保持着80%以上的原味鲜,感觉可以。只是没冻过大闸蟹,一是舍不得,这好的东西还不当时蒸蒸吃了,再说有过不吃死鳖蟹的古训,不敢破例。
但是买过吃过冻虾,觉着还可以。按说虾蟹一路,虾冻了能吃,蟹冻了也该能吃,只要不在意鲜味,不大会吃坏人。不过让我选择,还是不吃冻蟹,本来都是硬壳,里面的些微东西再解冻流掉一部分,更是没什么可吃的了。再说,大闸蟹鲜味没有了,谁还吃它?
如果是海蟹,如梭子蟹,死亡后短时间内是可以食用的。但是螃蟹是一种免疫力极强的食腐动物,吃的东西细菌病毒很多,但都被螃蟹的免疫力所压制,一旦螃蟹死了,甚至还没死,只是快死了,细菌病毒就会大量繁殖,并滋生出一些生物毒素。所有你天然免疫细胞可以识别哪些成分只要看到螃蟹半死不活,没精神,就最好别吃了。 螃蟹喜欢吃水中死鱼、死虾等腐败的动物尸体,在螃蟹体内便会聚集一定的细菌。尤其是河蟹,大多生长在污浊的河塘,蟹体内外沾有大量的病菌。活螃蟹可以通过体内的新陈代谢将细菌排出体外,但螃蟹一旦死亡,他体内的细菌就会大量繁殖,其中有一种细菌叫做变形杆菌,它可以把人体中的蛋白质脱羧,从而产生组胺,而当组胺积蓄到一定数量时,人吃了即会造成中毒,常见的表现有恶心、呕吐、腹痛、腹泻,严重者可发生脱水、抽搐、甚至休克。而且螃蟹有四个部位不可以吃。尤其是肝脏和心脏,是性寒的东西,老人,孕妇,小孩最好不要吃。
冷冻螃蟹能不能吃?
据我所知, 冷冻螃蟹是可以吃的,但要区分是哪种冷冻螃蟹,因为冷冻螃蟹有鲜冻螃蟹,次冻螃蟹两种, 而鲜冻螃蟹和次冻螃蟹,又是分为二种不同意义的螃蟹,因为鲜冻螃蟹就是那些刚捕捞上来的螃蟹
也是可以正常食用的螃蟹, 而次冻螃蟹就是那些卖不完的螃蟹,而这些卖不完的螃蟹,在可食用上面就不那么保证了, 因为这些卖不完的螃蟹,大部分多是老弱残兵的螃蟹,而且这些老弱残兵的螃蟹
由于冷冻的不是那么及时,所以在营养价值上面也就没有多少了, 而那些刚捕捞上来的螃蟹,由于冷冻的比较及时, 所以这些鲜冻的螃蟹,不管是在可食用上面,还是螃蟹的营养价值方面,
多要比次冻螃蟹强上很多,所以我们在吃冷冻螃蟹的时候,一定要认清楚哪种是鲜冻螃蟹,哪种是次冻螃蟹, 而且在吃冷冻螃蟹的时候,一定要注意螃蟹的三个方面,也就是一闻二看三清洗了
而一闻,就是代表着冷冻螃蟹有没有异味感,二看就是代表着冷冻螃蟹,有没有出现外表冻坏的情况,三清洗,就是代表着冷冻螃蟹的解冻清洗问题, 这且三个方面,对于冷冻螃蟹来说,也是至关重要的,
因为这三个方面,又是代表着冷冻螃蟹的 健康 食用问题了 ,并且只要出现三个方面的一种情况了,那么这个冷冻螃蟹,也就是不可食用的螃蟹了,因为冷冻螃蟹只要出现其中一种情况了
那么这个冷冻螃蟹,也就是变质的螃蟹了,而螃蟹只要一变质了,也就代表着不能再吃了, 所以我们在吃冷冻螃蟹的时候,一定要严格按照以上三个方面,来检查冷冻螃蟹的具体情况,
因为只有三个方面多没有问题了,那么这个冷冻螃蟹,才是 健康 可食用的螃蟹, 但吃螃蟹的时候,还是建议大家吃些鲜活螃蟹, 因为那些鲜活螃蟹,不管是在营养价值方面,还是螃蟹的口感方面,多要比冷冻螃蟹好的多
各位友友好,又快到了吃蟹的季节了。无论是海蟹还是江河湖蟹,都是肉质鲜美,极其诱人。两种蟹的口味,各有各的特点,由于蟹的肉质鲜美,以至于吃货大军不断扩大。别看蟹形象长的怪样。人家就凭这个怪劲肉长的好吃。
国人吃货们将野生蟹吃的差不多了,这就给养蟹商们提供了生财之道,各路江河湖海养蟹户,大展宏图,蟹的鲜美进入了寻常百姓餐桌!
但是大家都有个疑问。
冷冻螃蟹可以吃吗?
这里没有注明,到底是海鲜的梭子蟹?还是湖里养的大闸蟹!因为这两种蟹是完全不同种类的蟹,一种是海里生长的,一种是湖里或者是普通水里的生长的!
它们虽然都属于蟹,但味道差距有点大。我们大家都听说过。死蟹是不能吃的。
原因有
1.死蟹当中有大量的致病微生物和寄生虫,如果吃了死蟹很容易得肠道感染性疾病和寄生虫疾病,进而会危害身体 健康 。
2.死蟹中的营养物质均已被分解消耗,开始腐败。
3.死蟹之所以分解产物,尤其是蛋白质的分解产物,很容易引起过敏反应,轻者可能会导致皮肤瘙痒,起皮疹,重则可能会引起哮喘,导致呼吸困难,进而可能会危及生命。以上指的是死蟹。
冷冻过的蟹,不属于死蟹,应该是可以吃的,原因有,将湖里面打捞出来的鲜活的蟹迅速冷冻,没等蟹死亡分解和腐败产生细菌。活体冷冻,吃时解冻,应该可以吃,但冻过的大闸蟹,确实一点也不好吃,还有点苦,关键是太难吃了。
因为本人买过活的大闸蟹,将活蟹冻到冰箱里,冰箱冷冻室的温度为零下28度!后来我将冷冻蟹拿出来解冻后蒸着吃,里面几乎除了水就是黑色的黄,冷冻后的大闸蟹黄变成了黑色,而且还苦。蟹肉特别木,没有任何口感可言,虽然可以吃,但它的口感让你没办法吃。这指的是大闸蟹!
每年从八月开始吃,直到吃到12月!这中间有几个月的持续时间,八月初的蟹肉少瘦没有膏!九月底到十月间,蟹是最肥美的。
海里面的梭子蟹,我在电视上看到渔民从海里面油捕上来梭子蟹直接就将活蟹装到冷冻盒里面,送到冷库里,迅速冻上了,这就是我们在超市里面看到的冷冻的梭子蟹。即然超市里面有卖的,就是可以吃的,超市里面是有检验检疫部门的,也是受国家食品监测的,他能卖就能吃。
不过冷冻过的梭子蟹肉,肉质比较面,不适合蒸着吃,只适合炒来吃,和油炸来吃!我就在网上买过冷冻的梭子蟹肉。
做好了,还是挺好吃的。
分享一款香辣梭子蟹
1.将超市里买来的冷冻蟹肉块,解冻洗过后用料酒,葱姜蒜,鸡精,搅拌均匀腌大约20分钟后,撒上面粉适量打上一个鸡蛋,搅拌均匀,让每个蟹肉块都沾上鸡蛋和面粉糊,2.将饼锅烧热,加油,待油五成热后,将挂过糊的蟹肉块,码到饼锅上煎至两面金黄。将煎好的蟹肉块取出放盘待用
3.炒锅加热,放油,肉葱姜蒜炒香,加入适量香辣酱小火炒香!将煎好的蟹肉块,放入锅里,加水跟蟹肉块平齐,海蟹自带盐味不用加盐,汤中再加料酒少许!中火烧开,将蟹块烧熟收汤!留一些汤,撒上鸡精,出锅装盆!
一款烧冷冻蟹肉块就出锅了!同样非常鲜美好吃!
提示,冻梭子蟹肉,其鲜度不能跟新鲜的活蟹比!
其实我是吃过冷冻螃蟹的,吃完了什么事也没有,没腹泻也没呕吐。
当然,这螃蟹不是在外面餐馆吃的,是在菜市场里买多了,没吃完。因为不知道怎么养,那螃蟹也快处于濒死状态了,于是放自家冰箱里冰冻起来,过了几天才吃的。
即使是吃自家冰冻的螃蟹,我也是蛮纠结的。扔了吧,又觉可惜,我们这里买螃蟹都挺贵的 ; 吃吧,确实又怕出问题。
好在吃完什么事也没有,也可能跟天气有关,天冷,螃蟹也没那么快变质。
很多人觉得把死螃蟹多烧烧就没事了,其实不是这样的。当螃蟹垂死或已死时,蟹体内的组氧酸会分解产生组胺。
组胺为一种有毒的物质。随着死亡时间的延长,蟹体积累的组胺越来越多,毒气越来越大,即使蟹煮熟了,这种毒素也不易被破坏,容易引起人体的不良反应及中毒。
我见到过有餐馆负责买菜的人,到这菜市场里卖螃蟹的摊位收购死螃蟹,价格是活螃蟹的一半。据说这螃蟹是刚死的。
但这只是商家单方面所言,真正死了多少时间,他们是不可能告诉顾客的。
商家也要保住成本,告诉顾客这螃蟹刚死,顾客心里也会有一种侥幸心理,觉得刚死的螃蟹是还可以吃的。
活蟹直接冰冻还说得过去,若是死蟹,且还不知死了多长时间的拿去冰冻,这万一吃出了什么问题,那真是令人头痛。
所以外面海鲜馆和街上卖的冰冻螃蟹就不要吃了,还是买活的螃蟹回家烧,一次少买点,当天吃完。
在冬天,吃海鲜就属螃蟹最吸引人了。对于不是居住在海边城市的朋友们来说,估计是很难吃到新鲜的深海螃蟹。有时候,去海鲜馆或者菜市场上买螃蟹时,很多都是已经冷冻上好几天的,有人会开始担心这样的冷冻螃蟹到底能不能吃,吃了会不会不好?
其实,关于冷冻螃蟹能不能吃,主要是要看解冻后是否存在异味。在正常情况下,只要是没有变质和没有异味的话,冷冻螃蟹完全可以食用。很多人去买螃蟹的时候,经常会一下子买很多,然后又吃不完,那怎么办呢?这时候,不管是生的还是熟的就要放到冰箱里进行冷冻保存了,在这里要注意的是螃蟹一定要进行冷冻而不是冷藏。在螃蟹经过冷冻之后,过几天再拿出来解冻,然后放到蒸笼里蒸熟再吃就可以了。只是冷冻螃蟹解冻后,蟹肉会变软,口感也会变差,不如新鲜的好吃,但只要蒸熟透的话,吃了是不会闹肚子的。
除此之外,一定要注意的是有两种螃蟹是不能吃的。
第一种是被雨淋过的死螃蟹,这种螃蟹千万不能吃。不管你是用来清蒸还是爆炒,再怎么加工也是不能吃的。如果你吃了,那肯定会拉肚子,严重的可能会上吐下泻。我们都知道,螃蟹是靠吃腐烂的食物为生的,当它死亡后,如果再淋了雨,那么体内很快就会被细菌侵蚀并产生大量的毒素。而这些毒素,你再怎么用高温杀毒也是无法消除了。但如果螃蟹是刚刚死的而且又没有淋过雨的,只要彻底煮熟了,还是可以吃的。但是呢,我们去海鲜馆或者菜市场上买冷冻螃蟹的时候,又不知道这些螃蟹在冷冻之前是怎么样的,所以买的时候还是要注意一下,最好还是买新鲜的螃蟹。
第二种是河蟹,也就是我们常说的大闸蟹。大闸蟹死了之后,再冷冻是不能吃的。因为大闸蟹在死了之后,体内会产生一种叫做组胺的化学物质,这种化学物质是有毒性的。而且由于大闸蟹是生长在淡水中,所以它们喜欢吃死鱼、死虾等一些腐烂的尸体,这样的话就会在大闸蟹的体内产生大量的细菌,并且会不断的繁殖,分解蟹肉,从而产生像组胺这种有毒的物质。所以,我们在买冷冻螃蟹的时候必须要先了解清楚这些情况。如果是不能吃的冷冻螃蟹,不管是你自己吃还是到时候送人都是不好的。
那么,关于可以吃的冷冻螃蟹怎么做才好吃呢?这就要看螃蟹肥不肥了,如果不肥的话,那我还是建议蛋黄焗蟹,这样吃起来的话不会显得那么瘦。如果肥的话,那我的建议是香爆螃蟹、蛋黄焗蟹或者是清蒸螃蟹都可以。
最后,对于胃不好和对螃蟹过敏的人,建议别吃冷冻螃蟹。好了,关于冷冻螃蟹能不能吃,我就讲这么多,具体的做法就不写了,希望我的回答能帮到您。
取决于怎么处理,由于螃蟹高蛋白,非常容易腐败,因此新鲜和活力非常重要,如果活力很差再冻的大闸蟹,不建议吃。
大闸蟹冷冻分成两种:.生冻 和 熟冻。生冻指未煮熟即冷冻。其中生冻又进一步分为 活冻 和 死冻。 活冻即大闸蟹活力还很好的时候极速冷冻。死冻基本不建议,因为食品安全的风险很高。
关于活冻的技术方面,温差越大降温速度越快的冷冻方式,形成的冰晶越小,不容易刺破细胞膜,导致养分流失和降低细菌感染的几率。因此,首选采用液氮的冷冻隧道,液氮温度-198 C能迅速将温度降至-30 C左右,化冻后品质几乎没影响,但设备投入往往也非常贵。能用得上的,说明该工厂或品牌有实力而且有一定的产量,这些都是品质保证。其次是传统的风冷冻库,大概温度-30-40 C之间,能将蟹降温至-18 C,是比较常规的做法。家庭冰箱的制冷效率太低,有食品安全风险,也基本不建议。活冻螃蟹的解冻也有讲究。海鲜类解冻宜快,解冻时间过长容易滋长细菌。可以连袋子一起泡水里解冻,或者拿风筒吹。
熟冻的意思就是将螃蟹做熟了之后再动,此类技术在小龙虾上运用广泛,大闸蟹上比较少,但的确有商家这么做,且品质也不错,比如江苏的宝龙集团。具体的方式是先将活蟹清洗干净,然后高温蒸熟,直接超低温冷冻,也可以在蒸熟后加入调味料冻成熟醉的螃蟹。只要是正规的工厂,严格按照流程操作,安全是有保障的,只是熟冻的螃蟹在口感上可能会比现蒸的弱一点点。
由于大闸蟹价格从上市后到年底价格逐步攀升,冻蟹的意义在意保存品质,同时在价格低的时候可以大量买入保存,保证更长的销售时间。同样道理,不然大家怎么能在一年四季都有小龙虾吃?
这是要区分具体的螃蟹种类的。
一般市场上常见的螃蟹,可以分为 大闸蟹和海蟹 。大闸蟹也就是中华绒螯蟹,也被叫做河蟹、湖蟹等,这种螃蟹是一定要吃活的,死掉的冻蟹是不可以吃的。
还有一种螃蟹就是海蟹,包括梭子蟹、青蟹等,这类海蟹冷冻后是可以吃的。不过,冷冻后的风味肯定不如新鲜蟹这么好。
可以的
冻干粉和干细胞的区别是什么
冻干粉和干细胞的区别是干细胞是活性成分,而冻干粉是一种剂型。
冻干粉是在无菌环境下将药液冷冻成固态,抽真空将水分升华干燥而成的无菌粉注射剂。冻干粉是采用冷冻干燥机的真空冷冻干燥法预先将药液里面的水分冻结,然后在真空无菌的环境下将药液里面被冻结的水分升华,从而得到冷冻干燥而成。
冻干粉是采用冷冻干火喿机的真空冷冻干燥法预先将药液里面的水分冻结,然后在真空无菌的环境下斗条药液里面被冻结的水分升华,从而得到冷冻干燥而成。
冻干粉与其说是一个产品,不如说它是一门技术,通过冻干方式冷冻药液的一门技术。这种方法可以让药液对生物组织和细胞结构和特征的损伤变小,有效保护了许多热敏性药物生物制品有效成份的稳定性。
冻干粉一般是配合溶酶液一起使用的,我们需要先将两瓶打开,然后将溶酶液倒入冻干粉中,盖上盖子晃动几下,是冻干粉充分溶液,然后就可以在洁面之后涂抹在脸上了。
冻干粉针对过去使用化妆品中的脱皮物及不良成份造成的角质层变薄、红血丝外露、脆弱、易发红、发痒等现象有超好的修复作用。
不仅如此,冻干粉敷日晒后皮肤红肿、脱皮、轻度灼伤,甚至日光性皮炎对晒后修复效果非常好,迅速的对受损肌肤补水和加个角质和深度修复,一般情况24小时就能看到明显的效果。
求问干细胞治糖尿病 为何希望变成泡影?
“干细胞治糖尿病”为何希望变成泡影?随着干细胞技术逐渐被大众熟知,干细胞治疗糖尿病无疑成为这几年的热议话题。然而当这个“万能细胞”给人们带来无限可能和希望的时候,技术的不够成熟,却让这一切理想变成镜花水月。干细胞“神话”让患者失望而归“干细胞以旧换新,打破糖尿病不治神话,不截肢治疗糖尿病足……”近年,诸如此类的宣传在广大糖友的视野里屡见不鲜。特别是,这类广告大多出自一些正规的医疗机构,这让很多患者动了心。来自江苏的陈女士从广告上看到,北京的一家部队医院正在开展“干细胞治疗糖尿病”的项目。陈女士的女儿今年只有20岁,却被诊断出糖尿病,让陈女士着实心疼。女儿这么年轻,只要有机会一定要尽最大努力帮女儿治疗。来到北京之后,医生非常细心为女儿安排治疗,然而当问起治疗的细节医生却很难说清楚,只说干细胞都是在实验室培养的,是很先进的技术。每当陈女士犹豫徘徊,医生和护士总会“鼓励”她,这么老远来到北京不能就这么放弃,最终陈女士下定了决心。但在治疗结束后几个月,女儿的空腹血糖依然高出正常人很多,昂贵的治疗并没能起到什么效果。与此同时,不少人与陈女士有着同样的遭遇。患者在很多打着“干细胞”旗号的医疗机构,自费做了“小白鼠”,没有效果不说,还承担着不可预知的风险。如今,很多糖尿病患者提起“干细胞”都会产生一种排斥感,认为这些治疗都是骗人的,用“不过关”的技术在拿患者做实验。国内肝细胞治疗糖尿病尚未成熟干细胞作为一项新型的治疗方法,其本身具有很高的临床应用价值。因为干细胞具备自我复制以及再次分化的潜能,在治疗糖尿病时,可以分化为胰岛细胞、激活休眠的胰岛细胞、修复受损的胰岛细胞,调节免疫平衡、诱导免疫耐受。不过,我国目前关于干细胞治疗疾病(一部分血液系统疾病除外)还没有一个明确的规范与标准,政府也未批准医疗机构用干细胞进行疾病的治疗,因此我国的干细胞治疗还处于临床研究阶段。尚在研究的技术就开始打着“临床应用”的幌子对患者进行治疗,还收取高昂的医疗费用,实在是让患者心寒。那么,既然有这么多医疗机构看上了“干细胞”这块大蛋糕,并以此大做文章,是否因为这项技术曾在治疗中获得过成功?医疗相对发达的欧美国家是否可以完成此项技术呢?德国拥有30年干细胞临床应用史在欧洲,干细胞早就不是一项新技术了。而在众多医疗科技较发达的国家,德国的干细胞技术可以算是这个时代最先进水平的代表。德国对干细胞临床应用已有30年历史,其监管体系、相关标准及法规都已经非常成熟和完善。位于德国海德堡的TICEBA医疗中心,从2008年开始已经帮助全球200多名糖尿病患者进行治疗,最好的治疗效果是能够摆脱胰岛素和降糖药,恢复正常人的生活。他们利用的是ABCB5皮肤干细胞技术,这项技术在2008年获得了世界专利,并正式展开临床治疗。与国内很多尚未获得干细胞应用资质的医院相比,TICEBA获得了欧盟的自体干细胞操作授权,以及德国主管机关根据《德国药品法》颁发的利用自体组织作为药品生产加工材料,并应用于自体治疗的授权。整个治疗过程严格按照GMP标准规范,在TICEBA接受治疗的患者能够得到更好的保障。国内商业宣传让干细胞治疗成为泡影干细胞治疗糖尿病技术在国际上获得的成功,无疑给了国内很多医疗机构“启发”:既然糖尿病的根源治疗已经能够实现,一定会有很多患者会因治病心切而选择尝试。但是,不够成熟和规范的技术一次次给患者带来失望和伤害,以至于现在人们谈“干细胞”色变。事实上,可怕的并不是干细胞本身,而是不够完善的技术。优翔专家提示,选择干细胞治疗糖尿病,一定要详细了解医疗机构在干细胞应用方面的资质,不能盲目轻信所谓的“大医院”。目前来讲,全球具备应用ABCB5干细胞治疗疾病权限的仅有德国TICEBA一家机构。
有人了解purtier placenta鹿胎盘干细胞胶囊吗?
这个只能算是保养品,打着干细胞的旗号卖着保健品。最近好像炒得挺热,但是也只能代购,中国进口备案是通不过的。
成分:鹿胎盘素、铁皮石斛、番茄红素、氧杂葱酮、胶原蛋白、深海鲛精、月见草油、琉璃苣油、芦荟、鳄梨油。
胎盘素和胎盘干细胞是完全不同的概念,胎盘素的从鹿胎盘中提取出的一些营养物质:一般胎盘素所含有的主要成分包括蛋白质、核酸、磷脂类、多醣体、氨基酸、矿物质、维生素类等。并不是有活性的细胞。
目前这个阶段,活性干细胞是不可能被加工成产品的,国家食药监督管理局也不允许产品中添加细胞类成分。
相关文章
发表评论
评论列表
- 这篇文章还没有收到评论,赶紧来抢沙发吧~