免疫细胞相关课题(细胞免疫论文)
高中生物研究性学习课题:健康的云南高效干细胞怎么选择生活方式与防癌
背景:癌症被称为“21世纪的瘟疫”。但如果你始终保持一种健康的生活方式,这场瘟疫可能就很难侵袭到你,因为现有的绝大多数癌症都是由于不健康的生活方式和生活行为引起的。许多研究证明,环境因素是肿瘤发病的重要因素,包括饮食习惯、营养素摄入不足、摄入过多或营养素间不平衡以及污染、情绪因素等。专家认为,50%-60%的癌症都与此有关,即所谓生活方式癌。若选择科学的生活方式,去掉不良陋习,则可以有效地预防癌症,降低癌症的发病率。
癌症是什么 :
发生于上皮组织的恶性肿瘤叫癌。癌症是由身体细胞自动增殖的异性新生物,这种新生物由一群不随生理需要而自由发展的癌细胞所组成癌细胞并无正常细胞的功能。由于它的快速而无规律的生长,不但消耗人体的大量营养,而且破坏了正常器官的组织结构和功能。肿瘤细胞不断分裂,形成新的肿瘤细胞,并由原发部位向周围组织浸润和它外播散,这种播散如无法控制,将进一步侵犯要害器官和引起衰竭,最后导致死亡。癌的种类有200多种,除了毛发、指甲外所有地方都可发生癌,世界上每年因癌症死亡的人数不下500万。
致癌因素及对策 :
1.食物致癌
据资料统计,50%的妇女和30%的男性所患的癌症均直接或间接地与每日
饮食中的成分有关,如长期吃某些酸菜或霉菌污染的食品,可引起癌症。流行病学资料显示,约有50%的癌症是消化系统及膀胱癌,这些部位都是食物或废物停留时间较长的部位。这一事实亦证明饮食方法不当可引起癌症。
1.1油烟:炒菜时的油烟是严重的致癌物质。对于作为厨房主人的家庭妇女,
吸入油烟量较多可能是女性肺癌发病率较高的原因之一。
1.2油炸食品:由于使用反复加热的油,油炸食品中会含有醛、酮、低级脂肪
酸、氧化物、环氧化物、内酯及热聚合物等诱癌物质。
1.3熏制食品:含有大量的苯并芘和多环芳烃等致癌物质,同时也含有致癌物
质亚硝胺。
2.吸烟、饮酒致癌
据调查,重度吸烟者比不吸烟者肺癌发病率高15~30倍,且吸烟的支数越多,
吸烟开始的年龄越早,肺癌的发病率也越高。大量饮酒与口腔癌、咽癌、食道癌等有关,凡是饮酒较多的地区和国家,上述各部位癌发病率都比较高。嗜酒与吸烟相结合,可提高致癌程度15倍。
●大家应该都知道吸烟有害于健康,但有些人总是对其爱不释手,这样不仅害人也不利己。所以防癌必须具备一个健康的生活方式,酒是可以适当饮用以保健,但烟绝不能沾手,即使是很少也对你和你周围的人影响巨大。
3.大气致癌
城市空气受生活、工业废气污染,目前已肯定的就有30多种致癌物质,其中致癌性最强、最具有代表性的是苯并芘。
●这个因素不是能靠一己之力来改变的,我增肥药排行们要呼吁社会加强环保,让全社会的人共同面对这个因素。
4.精神因素致癌
医生发现,有的成年人由于反复受到失业、离婚等严重刺激,失望、自卑、
感情压抑,结果6~18个月后发展成癌症。动物实验亦有相同的结果。临床中,不少癌症患者在发病前曾受过精神创伤。
●要防癌就必须具备一个良好的心态,要坦然面对挫折。如果因小小的挫折而一蹶不振,长此下去就可能会患上癌症。
5.病毒致癌
可以导致动物肿瘤的病毒称为肿瘤病毒(tumor virus)。人类某些肿瘤可能与病毒有关。
6.物理致癌
阳光中的紫外线(UV)可引起皮肤鳞状细胞癌、基底细胞癌和恶性黑色素瘤。UV可使DNA中相邻的两个嘧啶形成二聚体,造成DNA分子复制错误。在正常人,这种DNA损伤通过DNA切除修复(excision repair)机制进行修复。前面我们曾提到一种罕见的常染色体隐性遗传病——着色性干皮病的患者,由于先天性缺乏修复DNA所需的酶,不能将紫外线所致的DNA的损害修复,皮肤癌的发病率很高。
●尽量避开紫外线是最好的办法。
7.遗传致癌
遗传致癌的概率可是相当高,而且越近越危险,那如何避免遗传致癌呢? 癌症的发生与免疫密切相关。因此,有家族遗传的人群,只要拥有健康强大的免疫就可以避免癌症的发生。同时,每年进行定期体检,就可以拥有比其他线雕抗衰多少钱一次人群更美好的健康和生活。
癌症的发生与机体免疫功能密切相关。研究表明,即便是具有癌症家族遗传,也只有在致癌因素的不断刺激下,自身的免疫细胞受损,免疫功能出现严重低下后才会患上癌症。
生活误区:
1、 为什么常吃烘烤食物易患癌:因烘烤食物时燃料中会产生大量的二氧化碳、二氧化硫和一种叫3,4-苯丙比的致癌物质,这些物质会遗留在食物上,所以人吃多了极易患癌。
2、 吃哪些蔬菜易中毒:1)、发芽、发青的土豆有毒。2)鲜黄花菜(即金针菜)有毒。3)腌制未透的菜。4)隔夜熟白菜、熟韭菜会将菜中的硝酸盐转化为亚硝酸盐,亚硝酸盐是强致癌物,熟白菜、熟韭菜放久了切勿吃。
3、 儿童不宜吃皮蛋:皮蛋在加工过程中加入一种氧化铅的物质,此物有毒,影响智力
4、 烂姜不宜吃:烂姜有极毒,能坏死肝细胞。
5、 豆油不可生吃:生豆油中含有苯,苯能破坏人的造血系统,所以做凉拌菜和饺陷不宜用生豆油,如将豆油下锅熬熟,苯就蒸发了。
6、 久煮的水不能吃:隔夜开水和经久煮的水以及保温瓶中非当天的开水中,均含有一种叫亚硝酸铵的物质,此物是强致癌物。
7、 鱼、肉烧焦吃不得:鱼、肉等荤菜,烧焦就会产生一种叫苯丙比的致癌物质。
8、 新婚男子莫吃可乐:可口可乐,能将人体内精子杀死,所以婚后男子要想孩子切莫吃。
9、 吃嫩炒猪肝有害:猪的肝脏是解毒器官,肝内均含少量毒素,如不炒透,吃了有害。
10、 哪些水果忌海味?柿子、葡萄石榴、山查、香蕉,这些水果中含有鞣酸。鞣酸与海味中的钙结合,会形成一种难以消化的物质,而起肚疼、呕吐、恶心、腹泻等现象。
11、 哪些食物易使皮肤变黑?常吃肝脏、肾、赤豆、黑芝麻、乌鱼、浓咖啡、易使皮肤变黑。
12、 哪些食物易使皮肤增白?一般为黄绿色食品如芹菜、菠菜、洋葱、苹果、萝卜等。
13、 吃豆浆有哪些四忌?1)忌吃红糖2)忌冲鸡蛋3)忌不熟4)忌用保温瓶装。
14、 吃牛奶有哪五忌?1)忌加红糖2)忌冰冻3)忌掺开水4)忌空服5)忌同补药同服。
15、 油渣、锅巴不宜吃:油渣、锅巴中含有苯丙比,苯丙比是致癌物质,所以不宜吃。
关于细胞生物学术论文
细胞生物是指所有具有细胞结构的生物。这是我为大家整理的关于细胞生物学术论文,仅供参考!
关于细胞生物学术论文篇一
细胞因子的生物学活性
关键字: 细胞因子
细胞因子具有非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢等。
一、免疫细胞的调节剂
免疫细胞之间存在错综复杂的调节关系,细胞因子是传递这种调节信号必不可少的信息分子。例如在T-B细胞之间,T细胞产生IL-2、4、5、6、10、13,干扰素γ等细胞因子刺激B细胞的分化、增殖和抗体产生;而B细胞又可产生IL-12调节TH1细胞活性和TC细胞活性。在单核巨噬细胞与淋巴细胞之间,前者产生IL-1、6、8、10,干扰素α,TNF-α等细胞因子促进或抑制T、B、NK细胞功能;而淋巴细胞又产生IL-2、6、10,干扰素γ,GM-CSF,巨噬细胞移动抑制因子(MIF)等细胞因子调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节作用。例如T细胞产生的IL-2可刺激T细胞的IL-2受体表达和进一步的IL-2分泌,TH1细胞通过产生干扰素γ抑TH2细胞的细胞因子产生。而TH2细胞又通过IL-10、IL-4和IL-13抑制TH1细胞的细胞因子产生。通过研究细胞因子的免疫 网络调节,可以更好地理解完整的免疫系统调节机制,并且有助于指导细胞因子做为生物应答调节剂(biologicalresponsemodifier’BRM)应用于临床 治疗免疫性疾病。图4-1 细胞因子与TH1、TH2的相互关系(略)
二、免疫效应分子
在免疫细胞针对抗原(特别是细胞性抗原)行使免疫效应功能时,细胞因子是其中重要效应分子之一。例如TNFα和TNFβ可直接造成肿瘤细胞的凋零(apoptosis)’使瘤细胞DNA断裂’细胞萎缩死亡;干扰素α、β、γ可干扰各种病毒在细胞内的复制,从而防止病毒扩散;LIF可直接作用于某些髓性白血病细胞,使其分化为单核细胞,丧失恶性增殖特性。另有一些细胞因子通过激活效应细胞而发挥其功能,如IL-2和IL-12刺激NK细胞与TC细胞的杀肿瘤细胞活性。与抗体和补体等其它免疫效应分子相比,细胞因子的免疫效应功能,因而在抗肿瘤、抗细胞内寄生感染、移植排斥等功能中起重要作用。
三、造血细胞刺激剂
从多能造血干细胞到成熟免疫细胞的分化发育漫长道路中,几乎每一阶段都需要有细胞因子的参与。最初研究造血干细胞是从软琼脂的半固体培养基开始的,在这种培养基中,造血干细胞分化增殖产生的大量子代细胞由于不能扩散而形成细胞簇,称之为集落,而一些刺激造血干细胞的细胞因子可明显刺激这些集落的数量和大小因而命名为集落刺激因子(CSF)。根据它们刺激的造血细胞种类不同有不同的命名,如GM-CSF、G-CSF、M-CSF、multi-CSF(IL-3)等。目前的研究表明,CSF和IL-3是作用于粒细胞系造血细胞,M-CSF作用于单核系造血细胞,此外Epo作用于红系造血细胞,IL-7作用于淋巴系造血细胞,IL-6、IL-11作用于巨核造血细胞等等。由此构成了细胞因子对造血系统的庞大控制 网络。某种细胞因子缺陷就可能导致相应细胞的缺陷,如肾性贫血病人的发病就是肾产生Epo的缺陷所致,正因如此,应用Epo 治疗这一疾病收到非常好的效果。目前多种刺激造血的细胞因子已成功地用于临床血液病,有非常好的 发展前景。
四、炎症反应的促进剂
炎症是机体对外来刺激产生的一种病理反应过程,症状表现为局部的红肿热痛,病理检查可发现有大量炎症细胞如粒细胞、巨噬细胞的局部浸润和组织坏死,在这一过程中,一些细胞因子起到重要的促进作用,如IL-1、IL-6、IL-8、TNFα等可促进炎症细胞的聚集、活化和炎症介质的释放’可直接刺激发热中枢引起全身发烧’IL-8同时还可趋化中性粒细胞到炎症部位’加重炎症症状.在许多炎症性疾病中都可检测到上述细胞因子的水平升高.用某些细胞因子给动物注射’可直接诱导某些炎症现象’这些实验充分证明细胞因子在炎症过程中的重要作用.基于上述理论研究结果’目前已开始利用细胞因子抑制剂治疗炎症性疾病’例如利用IL-1的受体拮抗剂(IL-1receptor antagonist’IL-lra)和抗TNFα抗体治疗败血性休克、类风湿关节炎等,已收到初步疗效。
五、其它
许多细胞因子除参与免疫系统的调节效应功能外,还参与非免疫系统的一些功能。例如IL-8具有促进新生血管形成的作用;M-CSF可降低血胆固醇IL-1刺激破骨细胞、软骨细胞的生长;IL-6促进肝细胞产生急性期蛋白等。这些作用为免疫系统与其它系统之间的相互调节提供了新的证据。
关于细胞生物学术论文篇二
细胞衰老的分子生物学机制
摘要:细胞衰老(cellular aging)是细胞在其生命过程中发育到成熟后,随着时间的增加所发生的在形态结果和功能方面出现的一系列慢性进行性、退化性的变化。细胞衰老是基因与环境共同作用的结果,是细胞生命活动过程的客观规律。为研究细胞衰老分子生物学机制,本文就此展开研究。
关键词:细胞衰老;分子生物学;机制研究
细胞的衰老和死亡与个体的衰老和死亡是两个不同的概念,个体的衰老并不等于所有细胞的衰老,但是细胞的衰老又是同个体的衰老紧密相关的。细胞衰老是个体衰老的基础,个体衰老是细胞普遍衰老的过程和结果。
细胞衰老是正常环境条件下发生的功能减退,逐渐趋向死亡的现象。衰老是生界的普遍规律,细胞作为生物有机体的基本单位,也在不断地新生和衰老死亡。生物体内的绝大多数细胞,都要经过增殖、分化、衰老、死亡等几个阶段。可见细胞的衰老和死亡也是一种正常的生命现象。我们知道,生物体内每时每刻都有细胞在衰老、死亡,同时又有新增殖的细胞来代替它们。
衰老是一个过程,这一过程的长短即细胞的寿命,它随组织种类而不同,同时也受环境条件的影响。高等动物体细胞都有最大增殖能力(分裂)次数,细胞分裂一旦达到这一次数就要死亡。各种动物的细胞最大裂次数各不相同,人体细胞为50~60次。一般说来,细胞最大分裂次数与动物的平均寿命成正比。通过细胞衰老的研究可了解衰老的某些规律,对认识衰老和最终找到延缓或推迟衰老的方法都有重要意义。细胞衰老问题不仅是一个重大的生物学问题,而且是一个重大的社会问题。随着科学发展而不断阐明衰老过程,人类的平均寿命也将不断延长。但也会出现相应的社会老龄化问题以及呼吸系统疾病、心血管系统疾病、脑血管病、癌症、关节炎等老年性疾病发病率上升的问题。因此衰老问题的研究是今后生命科学研究中的一个重要课题。
1 细胞衰老的特征
科学研究表明,衰老细胞的细胞核、细胞质和细胞膜等均有明显的变化:①细胞内水分减少,体积变小,新陈代谢速度减慢;②细胞内酶的活性降低;③细胞内的色素会积累;④细胞内呼吸速度减慢,细胞核体积增大,核膜内折,染色质收缩,颜色加深。线粒体数量减少,体积增大;⑤细胞膜通透性功能改变,使物质运输功能降低。形态变化总体来说老化细胞的各种结构呈退行性变化。
衰老细胞的形态变化表现有:①核:增大、染色深、核内有包含物;②染色质:凝聚、固缩、碎裂、溶解;③质膜:粘度增加、流动性降低;④细胞质:色素积聚、空泡形成;⑤线粒体:数目减少、体积增大;⑥高尔基体:碎裂;⑦尼氏体:消失;⑧包含物:糖原减少、脂肪积聚;⑨核膜:内陷。
2 分子水平的变化
①从总体上DNA复制与转录在细胞衰老时均受抑制,但也有个别基因会异常激活,端粒DNA丢失,线粒体DNA特异性缺失,DNA氧化、断裂、缺失和交联,甲基化程度降低;②mRNA和tRNA含量降低;③蛋白质含成下降,细胞内蛋白质发生糖基化、氨甲酰化、脱氨基等修饰反应,导致蛋白质稳定性、抗原性,可消化性下降,自由基使蛋白质肽断裂,交联而变性。氨基酸由左旋变为右旋;④酶分子活性中心被氧化,金属离子Ca2+、Zn2+、Mg2+、Fe2+等丢失,酶分子的二级结构,溶解度,等电点发生改变,总的效应是酶失活;⑤不饱和脂肪酸被氧化,引起膜脂之间或与脂蛋白之间交联,膜的流动性降低。
3 细胞衰老原因
迄今为止,细胞衰老的本质尚未完全阐明,难以给明确的定义,只能根据现有的认识,从不同的角度概括细胞衰老的内涵。细胞衰老是各种细胞成分在受到内外环境的损伤作用后,因缺乏完善的修复,使“差错”积累,导致细胞衰老。根据对导致“差错”的主要因子和主导因子的认识不同,可分为不同的学说,这些学说各有其理论基础和实验证据[1]。
3.1差错学派 有以下七种学说,有代谢废物积累学说、大分子交联学说、自由基学说、体细胞突变学说、DNA损伤修复学说、端粒学说、生物分子自然交联说等。其中最主要的自由基学说和端粒学说。
3.1.1自由基学说 自由基是一类瞬时形成的含不成对电子的原子或功能基团,普遍存在于生物系统。其种类多、数量大,是活性极高的过渡态中间产物。正常细胞内存在清除自由基的防御系统,包括酶系统和非酶系统。前者如:超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶(GSH-PX),非酶系统有维生素E,醌类物质等电子受体。机体通过生物氧化反应为组织细胞生命活动提供能量,同时在此过程中也会产生大量活性自由基。自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂类等大分子物质,造成损伤,如DNA的断裂、交联、碱基羟基化。实验表明DNA中OH8dG(8-羟基-2‘-脱氧鸟苷)随着年龄的增加而增加。OH8dG完全失去碱基配对特异性,不仅OH8dG被错读,与之相邻的胞嘧啶也被错误复制。大量实验证明实,超氧化物岐化酶与抗氧化酶的活性升高能延缓机体的衰老。Sohal等(1994、1995),将超氧化物岐化酶与过氧化氢酶基因导入果蝇,使转基因株比野生型这两种酶基因多一个拷贝,结果转基因株中酶活性显著升高,平均年龄和最高寿限有所延长。
英国学者提出的自由基理论认为自由基攻击生命大分子造成组织细胞损伤,是引起机体衰老的根本原因,也是诱发肿瘤等恶性疾病的重要起因。自由基就是一些具有不配对电子的氧分子,它们在机体内漫游,损伤任何于其接触的细胞和组织,直到遇到如维生素C、维生素E、β-胡萝卜素、OPC(原花青素)之类的生物黄酮等抗氧化剂将其中和掉或被机体产生的一些酶(如SOD)将其捕获。自由基可破坏胶原蛋白及其它结缔组织,干扰重要的生理过程,引起细胞的DNA突变。此外还可引起器官组织细胞的破坏与减少[2]。例如神经元细胞数量的明显减少,是引起老年人感觉与记忆力下降、动作迟钝及智力障碍的又一重要原因。器官组织细胞破坏或减少主要是由于自由基因突变改变了遗传信息的传递,导致蛋白质与酶的合成错误以及酶活性的降低。这些的积累,造成了器官组织细胞的老化与死亡。
生物膜上的不饱和脂肪酸易受自由基的侵袭发生过氧化反应,氧化作用对衰老有重要的影响,自由基通过对脂质的侵袭加速了细胞的衰老进程[3]。 自由基作用于免疫系统,或作用于淋巴细胞使其受损,引起老年人细胞免疫与体液免疫功能减弱,并使免疫识别力下降出现自身免疫性疾病。
3.1.2端粒学说 染色体两端有端粒,细胞分裂次数多,端粒向内延伸,正常DNA受损。
3.2遗传学派 认为衰老是遗传决定的自然演进过程,一切细胞均有内在的预定程序决定其寿命,而细胞寿命又决定种属寿命的差异,而外部因素只能使细胞寿命在限定范围内变动。
参考文献:
[1]郭齐,李玉森,陈强,等.脱氧核苷酸钠抗人肾脏细胞衰老的分子机制[J].中国老年学杂志,2013,33(15):3688-3690.
[2]胡玉萍,吴建平.细胞衰老与相关基因的关系[J].中外健康文摘,2012,09(14):35-37.
[3]孔德松,魏东华,张峰,等.肝纤维化进程中细胞衰老的作用及相关机制的研究进展[J].中国药理学与毒理学杂志,2012,26(05):688-691.
SCI模板丨临床科研中经典的免疫研究思路
关键词: 自身免疫性疾病;免疫机制;临床科研
自从1980's免疫学蓬勃发展以来,无论自身免疫性疾病、还是其他疾病发病中的免疫学机制,都备受重视。免疫治疗更是成为自身免疫性疾病、癌症、感染性疾病等发展最快速的领域。
经常有朋友问,对于疾病的免疫学研究,怎么做最合适?
我们先以一张自身免疫性疾病中的示意图来展示免疫发生机制,这篇综述发表于2021年6月17日,由瑞典苏黎世大学完成【1】。
(图源:Ref1)
可以看到,免疫研究可以分为以下几个层面。
1,研究外周血中免疫抗体、免疫分子和免疫细胞,观察病程当时的免疫状态;
2,还可以研究淋巴结/胸腺的生发中心,观察中长期免疫应答;
3,更可以研究骨髓中长寿浆细胞,观察长期免疫应答。
为方便大家更直观了解免疫研究的策略,我们针对三个方面各给出一篇在 Nature 发表的研究论文。
1,外周血研究
1.1,免疫球蛋白(IgG)
除了区分IgG、IgM和IgA之外,对于IgG的亚型研究特别值得关注。
尤其是对于自身免疫性疾病,IgG1和IgG3型抗体主要由Th1及其细胞因子介导;而IgG4抗体的产生是由Th2及IL-4, IL-10等介导。
最近几年IgG4相关疾病受到特别的关注,有很多临床工作可以做。
比如,不同类似的重症肌无力对利妥昔单抗治疗的敏感性就有很大差别。IgG4型抗体介导的MuSK抗体阳性重症肌无力对于如利妥昔单抗等通过耗竭B细胞为主要作用机制的疗法特别明显;而IgG1型抗体介导的AChR抗体阳性重症肌无力则稍逊。而对于其机制,可能需要从治疗前后外周血B细胞、生发中心记忆性B细胞和骨髓长寿浆细胞变化中找到答案。
我们的小鼠动物试验研究中也曾区分总IgG、IgG1、IgG2a、IgG2b等亚型。
1.2 最常用的免疫学指标
如 C-反应蛋白(CRP),红细胞沉降率(ESR)、铁蛋白 等三项。
我们在检索中发现,CRP和ESR已经有了足够的研究,但是 铁蛋白在自身免疫性疾病中研究还很欠缺 。
1.3 细胞 因子
辅助性T细胞及其细胞因子在启动和激活免疫应答中常常起到关键作用。
针对一个细胞因子的患者血清水平发现增高/降低、在动物试验中过表达或敲除来看其功能,都可以是非常好的科研课题。
(IL-17基因敲除后关联细胞因子的研究)
针对上述三项蛋白的检测,ELISA是最常规方法。
1.4 免疫细胞的变化
流式细胞会起到关键作用。通过层层标记从而拣选自己想要的亚组、或者比较不同亚型细胞的比例,从而确定免疫细胞的改变。
(常用的细胞群及标记)
为了更清楚地展示对外周血中免疫蛋白及免疫细胞的研究技术手段和策略,我们引用发表于英国剑桥大学发表于 Nature 的论文【2】,大家可以从中获得很多借鉴。
本研究从抗体水平、特异性B细胞免疫、辅助性T细胞免疫等方面检测了针对突变株的 特异性 免疫分子和 免疫细胞 情况,并做了全面分析。
对于研究感染性疾病、自身免疫性疾病,都有非常好的借鉴价值。
A,免疫抗体
B,记忆性B淋巴细胞
C,辅助性T细胞免疫
2,生发中心研究
人类淋巴结/小鼠脾脏或者淋巴结中的生发中心是研究免疫应答的重要领域。
所以,想研究更长期的免疫应答,则可以研究 淋巴结( 外周免疫器官 )中的生发中心 。
最简单的可以比较生发中心形成的大小。
更可以研究抗原特异性的生发中心B细胞(GC B)。如研究 淋巴结中抗原特异性的GC B和浆母细胞出现频率及持续时间。
大家可以从美国华盛顿大学发表在 Nature 的一篇文章【3】中学习到如何对淋巴结生发中心进行研究。
3,骨髓长寿浆细胞
长寿骨髓浆细胞(BMPC)是持久性的中和抗体的关键来源。
如果要研究最长期的免疫应答,则可以研究 骨髓( 中枢免疫器官 )中的长寿浆细胞 。
如美国华盛顿大学在 Nature 发表的论文【4】,就分别从1)证实骨髓中长寿浆细胞被激活和2)与外周浆细胞区别来做了研究。
通读这三篇 Nature 论文的时候,我们一直在思索,为什么这三篇研究可以发表在Nature,尤其是第二篇淋巴结生发中心的研究和第三篇骨髓长寿浆细胞的研究,试验设计相对简单。
这些研究之所以能够发表,最关键的是
1,严谨性。 这是所有论文的基本要求。也就是我们一直强调的last:这篇论文发表之后,这个题目就不需要重复了。因为本研究规范、严谨。
2,创新性。 这是顶刊论文的要求。比如外周血抗体、细胞因子、免疫细胞等做得已经太多,研究者就做了针对高龄老人的研究;而淋巴结和骨髓样本都很难得,之前还没有类似研究。
如果您还是对自己的研究课题的方向没有太明确的想法,也可 以从COVID-19研究寻找思路 。
因为
1)COVID-19已经成为研究 最全面而深入 的疾病;
2)从来没有任何一个疾病吸引这么多 全球最顶级科学家和试验室 的参与;
3)还有关键的是,这些研究大都是最近1年完成的,采用了 最新的研究方法和设计 。
所以COVID-19研究中有太多经典的研究设计,几乎各个研究领域都可以从中得到启发。
WOSCI沃斯编辑-SCI论文润色等。
免疫识别细胞
γδT细胞的抗原识别机制
中国免疫学杂志 1999年第10期第15卷 述评
作者:何维
单位:中国医学科学院基础医学研究所中国协和医科大学基础医学院免疫室,北京 100005
T细胞表面表达两类抗原受体(TCR):TCRαβ和TCRγδ。TCRαβ可特异地识别由抗原呈递细胞(APC)表面Ⅰ类或Ⅱ类MHC分子呈递的抗原肽,而TCRγδ则主要以MHC非限制方式识别各类抗原。最近对TCRγδ所识别的抗原类型及方式进行了较为深入的研究,本文就其进展作一述评。
1 TCRγδ的多样性和分布特点提示其抗原识别的特殊性
同TCRαβ和免疫球蛋白(Ig)类似,TCRγδ基因由重组的V、D、J和C区组成。虽然γ、δ位点的V区多样性不及α和β,但其连接区多样性则使TCRγδ存在甚至超过TCRαβ多样性的潜能〔1〕。然而,许多γδT细胞亚群仅取用了其受体库中很有限的一部分,一些特定的Vγ、Vδ和连接区序列的组合导致TCRγδ结构单调化〔1〕。小鼠γδT细胞有3种发育途径:第一组在胎儿胸腺中发育,分批产生的γδT细胞分别进入特定的上皮组织。这些细胞重组单一的γ/δ基因,并具有单一的连接区序列,表现出单一的特异性。Vδ5细胞进入皮肤,Vδ6细胞进入生殖道上皮和舌;第二组在成年胸腺中发育,大多表达Vγ1或Vγ4或少量Vγ2或Vγ7,并具有广泛的连接区多态性,其库容较大,主要分布在外周血中,偶尔也进入粘膜组织;第三组的发育是非胸腺依赖性的,主要为Vγ7和Vγ1,有较大的连接区多态性,主要分布在小肠上皮。因此,γδT细胞的抗原特异性覆盖了从单一特异性到极端可变的范围〔2〕。γδT细胞在不同分布部位的预先设定提示它们可能是识别特定抗原的特殊T细胞群体,而并非象TCRαβ细胞分布一样具有随机性。在人类中,Vδ仅取用δ链中的一种。成人外周血中大于70%的Vδ表达Vδ2,其余为Vδ1。Vδ2与VR9共表达,而Vδ1与Vγ中某一种共表达〔3〕。
2 γδT细胞的抗原识别类型与机制
2.1 MHC分子 一些文献报道小鼠和人γδT细胞可识别MHC Ⅰ和Ⅱ类分子。人类外周血γδT细胞(Vδ9)可识别同种异体树突状细胞(DC)/单核细胞表面的MHCⅡ类分子〔4〕。
1987年Matis 等利用同种异体APC在体外刺激无胸腺小鼠的脾细胞建立了一些MHC限制性的γδT细胞系〔5〕。它们识别同种异体细胞上非己的MHC分子并呈现特异性反应,但其特异性不同于传统的αβT细胞。例如,γδT细胞系LBK5可识别MHCⅡ类分子I-E的多个等位基因产物〔6〕。IEK是小鼠Ⅱ类MHC分子,可结合各种肽段和超抗原,刺激αβT细胞活化。Schild 等发现LBK5对IEK识别时,结合于IEK的肽段并不传递特异性,同时经典的抗原处理也未启动〔7〕。各种细胞对LBK5刺激能力的不同都可归结为其表面MHC分子表达的情况,而与细胞来源、类型和影响MHC-肽段装载的因素无关。结合在平皿上的IEK蛋白对LBK5的刺激与表达IEK的细胞引起的刺激强度相仿,这些结果表明LBK5是直接识别IEK分子的。
也有大量报道γδT细胞可识别非经典的MHC类分子。从裸鼠Balb/c脾脏中分离出G8系可识别T10和T22抗原〔6,7〕。Porcelli 等从免疫缺陷病人身上分离出CD1c限制性的γδT细胞。 Schild 等对G8系作了深入研究,发现T10和T22有94%的同源性〔7〕。与LBK5相似,G8克隆对T10/T22的识别不经传统的抗原处理途径。同样,不同细胞对激活γδT细胞的能力也都归于其表面MHC表达的情况,Ⅰ/Ⅱ类抗原处理过程对其并无影响。如小鼠细胞系RMA-S和人细胞系T2在将肽类负载于MHC I类分子上都有缺陷,而转染了T22的RMA-S和T2都可激活G8细胞。非常有意思的是,G8可识别果蝇(Drosophila melanogaster)细胞上表达的T10/T22,而果蝇并不具有与哺乳类相似的免疫系统,也缺乏任何抗原处理-呈递所必需的因子。上述结果表明,这些所谓的MHC限制性的γδT细胞克隆对经典MHC的识别似乎并不通过抗原的处理和呈递。MHC分子作为抗原本身被识别,而这些细胞上负载的肽段也都并不起配基的作用。另有报道,γδ细胞克隆TgI4.4可识别一种单纯疱疹T型跨膜糖蛋白gI〔8〕。在抗原处理缺陷的RMA-S细胞上表达的完整的野生型 gI可被TgI4.4细胞所识别,同样,包被与平皿上的可溶性重组gI-Ig也可被识别,这表明gI是不通过抗原处理和其它分子的呈递而被直接完整识别的。γδT细胞对蛋白抗原的识别似更倾向于直接识别而不经过处理和呈递。特定的MHC分子恰好是作为抗原而非抗原呈递分子被识别的。
2.2 非MHC分子 显而易见,相对于TCRγδ庞大的序列多态性,其经典抗原识别的种类还是太少。大量文献显示TCRγδ具有与TCRαβ截然不同的抗原识别途径。目前有两类分子被证明是TCRγδ配体:含磷酸基的非肽类小分子和热休克蛋白。
2.2.1 磷酸化基团 人类主要的γδT细胞亚群Vγ9/δ2可在分枝杆菌感染部位中大量存在,并在体外对细菌和寄生虫起反应。研究发现分枝杆菌中的有效成分是非肽的低分子量(1~3 kD)的化合物,包含碳水化合物骨架和磷酸成分。Constant 等从结核杆菌H37RV株中分离到4种不同的水溶物:TUBag1-4。TUBag4是5'-三磷酸胸苷,其γ-磷酸为一未被确定成分的低分子量基团所取代〔9〕。TUBag3与4结构相似,但为尿苷而非胸苷。1和2为3和4的非核苷酸片段,活性极小。TUBag4可刺激外周血Vγ9/δ2 T细胞的扩增和其它一些特异性的γδT细胞。这些化合物同时存在于微生物和哺乳动物中。由于从分枝杆菌培养滤液或提取物中分离天然抗原比较困难, Tanaka Y 等首先合成了一系列单个碱基的磷酸化合物,并发现其中一些,尤其是单烯基磷酸化合物(Monoethyl),可模拟Vγ9/δ2 T细胞对分枝杆菌的反应〔10〕。其后,他们又报道了此γδT细胞的天然配基:异戊烯焦磷酸盐(Isopentenyl pyrophosphate IPP)和相关的萜类(Prenyl)的焦磷酸化盐衍生物。而用磷酸基团代替焦磷酸基团则可大大削弱它们的抗原性。IPP和相关的萜焦磷酸盐是诸如维生素、脂类和类固醇等亲脂性化合物的活性前体。这些萜焦磷酸盐中间物同时存在于细菌和哺乳类细胞中,人Vγ9/δ2 T细胞亚群对它们的识别也许可以部分解释其对一系列肿瘤细胞系的反应性。上述研究都使用了活化的γδT细胞系,无APC和额外的细胞因子的存在。后继的多数研究结果进一步显示磷酸基团活化γδT细胞需要T-T细胞相互作用,而识别本身则不需要MHC Ⅰ/Ⅱ类分子、CD1、TAP1/TAP2或DMA/DMB的表达。尽管个别研究体系中有APC的存在,但认为是非MHC限制性的,其作用可能与提供γδT细胞生长所需的细胞因子有关。 而Carena 等的研究进一步显示APC表面MHC分子在γδT细胞识别磷酸基团配体中的特殊含义〔11〕。CD94(NKG2-A/B异质二聚体)是大多数γδT细胞表面表达的与MHC I类分子可发生特异性结合的受体。他们发现,CD94与MHC I类分子结合时可下调磷酸化配基对γδT细胞的激活。当该配基处于低浓度时,CD94的抑制作用更明显,从而提高了γδT细胞激活的阈值。在生理情况下,该机制对防止自身免疫应答具有重要意义。
另外一个重要的问题也初步得到了澄清,即TCRCDR3的多样性对Vγ9/δ2 T细胞磷酸化配基的特异性是否产生影响。通过取用一群随机的细胞克隆和不同配基的检验发现,所有的克隆都显示了相同形式的交叉反应性。要想选出对单一配基有特异性的克隆是不可能的。而且,无论用强的或弱的刺激物来扩增,T细胞系或克隆都显示了相同形式的交叉反应性〔12〕。虽然存在此种交叉反应性,但就配基结构而言,这些细胞是高度特异的。磷酸基团的数目和位置以及碳链骨架的类型对T细胞的活化都至关重要。因此,Vγ9/δ2 T寡克隆T细胞亚群具有广泛的交叉反应性而又是配基特异的。
2.2.2 热休克蛋白(hsp) 在1990年前后,有大量的报道显示γδT细胞识别热休克蛋白家族成员。识别hsp的外周血或脐血γδT细胞亚群的表型主要为Vγ9/δ2 ,具有丰富的连接区多态性,最初的发现来自于细菌感染。人类和小鼠γδT细胞识别的主要hsp家族成员为hsp60和hsp65〔13〕。随后又发现一些肿瘤细胞表面高表达热休克蛋白可活化Vγ9/δ2 T细胞,如Daudi淋巴瘤表面hsp60和肺癌细胞表面的hsp72等〔14,15〕。热休克蛋白的单克隆抗体则至少可部分抑制该反应。该反应与靶细胞表面热休克蛋白表达含量呈正相关。在一些自身免疫性疾病中,γδT细胞对靶细胞表面hsp的识别也被证实,如γδT细胞可识别多发性硬化病人少突胶质细胞表面hsp并引起细胞杀伤〔16〕。
hsp作为一类高度保守的分子伴侣蛋白,广泛存在于原核和真核生物细胞中。除了构成性表达之外,在如高温、低氧、放射、感染、中毒等各种应激条件下均可诱导其高表达。热休克蛋白在蛋白折叠、转送和亚基装配中起不可或缺的作用,而且它们在许多免疫应答过程中也发挥作用。它们与一系列蛋白和肽段结合并参与抗原呈递,使得APC能处理其结合的肽段而形成稳定的MHC I类分子-肽段复合物。另一方面,通过在细胞表面表达,hsp也可能作为抗原呈递分子起作用〔17〕,因为它的三维结构N-端肽段结合位点与MHC I类的肽段结合位点的结构相似。 在各种应激条件下,由于hsp诱导高表达而造成了γδT细胞的激活。通过其产生细胞因子和细胞毒活性的作用,γδT细胞可能发挥快速清除应激因素和受损细胞并且启动后继免疫反应的作用。
3 γδT细胞抗原识别的结构基础
综上所述,γδT细胞对抗原的识别与αβT细胞并不相似,而更类似于Ig对抗原的直接识别,并且无MHC限制性。TCRγδ与TCRαβ分子结构比较研究分析结果在一定程度上为此种作用差异性提供了解释。 TCRαβ和TCRγδ的二级结构与Ig类似。它们三者都通过重组V、D、J形成单一的Ig或TCR,从而形成对抗原的特异性。X线衍射研究结果显示Ig和TCRαβ的CDR3环均是识别肽段的关键结构,因此推测γ/δ链的相似区域也起类似作用。Rock 等分析了从小鼠到人Ig和TCR受体链的CDR3长度〔18〕。Ig轻链上CDR3短且长度相对固定,而重链CDR3长且长度范围变化大,这可能提示Ig识别从小分子到大的病原体较大范围内许多不同大小的抗原。TCRαβ的CDR3长度分布范围窄,且α、β链的CDR3长度相近,这可能反映出αβ链的功能需要,即同时接触MHC和结合肽段。TCRγδ的γ链CDR3短,长度范围小,而其δ链CDR3长且变化范围大,因此就CDR3长度而言,TCRγδ更类似于Ig而非TCRαβ。
在混合淋巴细胞反应中,与αβT细胞同种异体反应性克隆相比,识别同种异体MHC分子的γδT细胞克隆频率是很低的;而且大多数细胞克隆有很高的交叉反应性,这在αβT细胞同种异体反应性克隆中是极罕见的,这提示TCRγδ对MHC的反应类似于Ig对MHC的识别。
4 结论与问题
γδT细胞抗原识别的多样性和机制复杂性使人们目前尚难以概括γδT细胞全部的生物学意义。然而现有的研究结果似乎已经揭示了γδT细胞基本功能特点。γδT细胞对抗原的非MHC限制性和无需抗原处理和呈递识别方式提示,在机体内出现机体异常变化(如应激)时,γδT细胞可作出比αβT细胞更迅速的反应。此外,γδT细胞可对αβT细胞不能识别的抗原产生应答,在功能上与后者实现互补。另外,γδT细胞免疫监视功能具有广泛性,因为其识别配体如hsp 及磷酸类小分子物质在自然界中是普遍存在的。在历经长期进化后,通过APC对抗原肽的复杂处理与加工及精确呈递,αβT细胞实现了其高度抗原特异性、严格MHC限制性和周密职责分工(Th和CTL)的免疫应答特点,使免疫系统高效、协作有序而针对性极强地清除外源生物分子或病原体。而γδT细胞则以更广泛、快速和直接的方式对体内应激事件作出反应,同时其反应手段较为笼统,即γδT细胞可同时发挥细胞毒和分泌细胞因子双重功能;但是在某些特定部位如上皮,表达特定和单一TCR受体的γδT细胞似乎为局部高频突发事件而存在。总之,在免疫应答过程中,γδT细胞可能发挥着启动、协调与互补αβT细胞功能的作用。
γδT细胞抗原识别的研究目前在许多方面仍有待深入。γδT细胞识别蛋白抗原时所需要的基本结构要求是什么?在γδT细胞激活中,hsp到底通过何种途径起作用仍然很不明确。γδT细胞对细胞表面hsp分子的识别是直接识别,还是识别其呈递的肽段?事实上,hsp所携带的肽段的作用尚未被明确而完整地研究过。TCR的CDR3多样性究竟有何意义?既然hsp、磷酸类代谢物同时是自己和非己成分,为什么自身反应性的γδT细胞克隆在其发育中未被从细胞库中选择掉? 在这些物质引起的免疫反应中,γδT细胞的特异性是否同时指向外来物和自体成分?只有这些问题的全部澄清,人们才可对γδT细胞的生物功能作出全面和深刻的评价,并且可将其理论成果用于肿瘤和自身免疫病等的治疗。
自94年始,我们对γδT细胞的特性、分布、亚群、受体分子的选择性取用、功能特点及其在肿瘤和自身免疫病的参与作用进行了系统的研究,以期为揭示其功能之谜提供资料和促进其理论成果在疾病的预防、诊断和治疗中的应用。
作者简介:何维,男,43岁。留德医学博士,教授,博士生导师,中国协和医科大学基础医学院副院长,中国医学科学院基础医学研究所副所长。中国免疫学会基础免疫分会委员,北京免疫学会理事,《国外医学免疫学分册》、《中华微生物学和免疫学杂志》、《中国免疫学杂志》编委。94年回国工作后共主持国家重点基础研究发展项目(973)课题、95攻关课题、国家自然科学基金、863生物高科技计划、卫生部基金、国家博士点基金、教委基金和中美、中日和中德合作研究项目及医科院各种课题15项。科研集中在γδ型T细胞在抗感染免疫、肿瘤免疫和自身免疫中的作用,IL-15基因克隆与表达研究及其IL-15转基因瘤苗抗肿瘤作用,超氧化与免疫在衰老中的关系,胸腺退化的基因调控和老年性痴呆免疫学诊断等方面。目前共发表论文35篇(国外8篇),出版专著两部,获省部级科研二等奖一项。
有关免疫学的问题?哪位好心的高手帮帮忙。
目前发现的细胞因子种类很多,仅白细胞介素类物质就已超过20种,真正可供临床应用者并非很多,最常应用者有以下几种:
(1)干扰素:干扰素是1957年从病毒感染的细胞上清液中发现的第一个细胞因子,当时就已证明它具有抑制病毒复制的生物活性,干扰素也是第一个广泛应用于临床并取得明显疗效的细胞因子。目前多用于肿瘤、病毒感染及免疫调节的治疗。其副作用主要为发热及影响骨髓造血功能,停用后可恢复。但长期应用干扰素,可诱导体内产生抗干扰素抗体,使治疗效果减弱。
(2)集落刺激因子:在进行造血细胞的体外研究中发现,一些细胞因子可刺激不同的造血干细胞在半固体培养基中形成细胞集落,这些因子被命名为集落刺激因子(CSF),根据其作用对象,进一步命名分为粒细胞-CSF,巨噬细胞-CSF,粒细胞和巨噬细胞-CSF及多集落刺激因子,后证明所谓多集落刺激因子就是白细胞介素3。不同的CSF对不同发育阶段的造血干细胞和祖细胞起促进增殖分化作用是血细胞繁盛必不可少的刺激因子。当然,刺激红细胞增殖的红细胞生成素,刺激造血干细胞的干细胞因子,刺激胚胎肝细胞的白血病抑制因子及刺激血小板的血小板生成素等,也可包括在集落刺激因子范畴。有关集落刺激因子的临床应用,目前以粒细胞集落刺激因子和促红细胞生成素的报道最多,常用于各种原因的血细胞减少症,如再生障碍性贫血等,肿瘤放化疗的辅助治疗等。促红细胞生成素由于其可增加红细胞的携氧能力,增加体力,已成为一个新的兴奋剂,在体育竞赛中使用,因此对促红细胞生成素的监测已成为反兴奋剂的新课题。
(3)白细胞介素类:白细胞介素(interleukin)的原义是指介导白细胞间相互作用的一类细胞因子,1979年第二届淋巴因子国际会议上正式确定了白细胞介素的命名方法及标准,此后,每年都发现新的白介素,至2000年,已经正式命名的白介素为21种。研究表明,白介素不但介导白细胞间的相互作用,还参与其他细胞的调节,并相互影响,相互制约,由此构成了一个开放的,复杂的细胞因子调节网络。例如神经-内分泌-免疫网络就是由各个系统分泌的细胞因子相互作用而联系的,对细胞因子网络的研究不但会丰富免疫治疗手段,也会使我们更加深入的认识免疫系统复杂而精确的调节机制。
白介素的临床应用以白介素2最为广泛。白介素2是由辅助性T细胞分泌并参与多种免疫过程的因子。由于辅助性T细胞既是白介素2的产生细胞,又是白介素2 作用的靶细胞,因此呈现正反馈现象,即少量的白介素2可引发强烈的免疫反应,这也是细胞因子的自分泌现象。自从美国学者Rosenberg发现白介素2诱导的淋巴细胞具有强烈的肿瘤细胞杀伤能力(LAK)以来,白介素2的应用就更加广泛,尤其对于肿瘤和病毒感染的治疗,取得了一定的效果。但是,白介素2的体内半衰期极短,有研究认为其体内半衰期仅为20分钟,因此,目前应用多主张大剂量连续输注,增加了费用并导致使用的不便。而且大剂量使用白介素2还有诸如发热,水肿,骨髓抑制等副作用。
其他白介素的使用则远不如白介素2广泛,临床报道的仅有白介素3用于治疗血液系统疾病,白细胞介素5用于治疗寄生虫感染,白细胞介素12用于纠正艾滋病后者的TH1细胞进行性减少,白介素4和白介素13可诱导B细胞发生免疫球蛋白重链的类别而分泌Ig,因此抑制这两种因子的活性可预防I型超敏反应的发生,抑制白介素6活性,可治疗某些自身免疫病如慢性肾小球肾炎,银屑病等。
(4)肿瘤坏死因子:肿瘤坏死因子是一类能直接造成肿瘤细胞死亡的细胞因子,可直接诱导肿瘤细胞的凋亡,根据其结构和来源又可分为两类,即由单核巨噬细胞产生的肿瘤坏死因子-α和由活化的T细胞产生的肿瘤坏死因子-β,后者即旧称淋巴毒素,临床用于肿瘤治疗者为前者。最近还发现了肿瘤坏死因子家族的一些新成员,但尚未见到临床应用的报道。包括肿瘤坏死因子-α又称恶病质素,大剂量应用于人体后面积引起恶病质状态,表现为进行性削瘦、脂肪重新分布等。
(5)趋化因子:趋化因子是一组具有趋化作用的细胞因子,能吸引免疫细胞到免疫应答局部,参与免疫调节和免疫病理反应,他们多为小于100个氨基酸的小分子多肽,根据结构可主要分为4个趋化因子亚家族:CXC、CCC、C、CX3C亚家族,其中C代表半胱氨酸,X代表任一氨基酸。CXC家族成员多数基因定位于第4对染色体,包括白细胞介素8、IP-10(IFN inducible protein-10)等,CC家族成员多数基因定位于第17对染色体,包括MIP-1α,β(macrophage inflammatory protein)、 MCP-1(macrophage chemotactic protein)、RANTES
根据人体免疫的相关概念图回答问题:(1)人体内的免疫细胞来源于骨髓中的造血干细胞,由造血干细胞分化
(1)人体内的免疫细胞来源于骨髓中的造血干细胞,由造血干细胞分化而成的各种免疫细胞形态和功能不同是细胞分化的结果,实质是具有的选择性表达.
(2)免疫细胞包括吞噬细胞和淋巴细胞.
(3)图中具有分裂和分化能力的细胞的T细胞、B细胞和记忆细胞.
(4)图中c是浆细胞,由体液免疫过程可知,产生浆细胞的途径有三条:
①大部分病原体进入机体,被吞噬细胞吞噬、处理曝露出抗原决定簇,呈递给T细胞,T细胞呈递给B细胞,B细胞增殖分化形成浆细胞;
②少数病原体抗原直接刺激B细胞,B细胞增殖分化形成浆细胞;
③同种抗原再次侵入机体时,可以直接刺激记忆细胞,记忆细胞迅速增殖分化细胞浆细胞.
(5)抗体的本质是免疫球蛋白,由于抗体只能特异性与相应的抗原结合从而消灭抗原,如果抗原发生变化,原有的抗体会失去作用,因此我们接种了原来流行的流感病毒研制的疫苗,不一定预防现今的流行感冒.
故答案为:
(1)基因的选择性表达
(2)a 吞噬细胞
(3)AB
(4)浆细胞
①抗原直接刺激B细胞
②抗原由吞噬细胞呈递给T细胞,T细胞在呈递给B细胞
③抗原直接刺激记忆细胞
(5)免疫球蛋白 不行 抗体只能特异性与相应的抗原结合
相关文章
发表评论
评论列表
- 这篇文章还没有收到评论,赶紧来抢沙发吧~