莱利赛百科

您现在的位置是:首页 > 养生知识 > 正文

养生知识

间充质干细胞传代后生长速度变慢(间充质干细胞体内存活时间)

max2023-01-04养生知识63

细胞培养传代常见问题

01 一般拿到细胞后,应该注意什么?

收到细胞先不开盖,用酒精将整个细胞瓶外壁进行消毒,放在培养箱静置若干小时后(看细胞密度而定)在倒置显微镜下观察细胞生长情况,并对细胞进行不同倍数拍照(建议收细胞时的培养基拍一张照片,观察培养基的颜色和是现在的植发技术可不可靠否有漏液情况,显微镜下拍细胞100X,200X各两张),排除细胞本身污染的情况。

02 何时须更换培养基?

视细胞生长密度而定,常规细胞2-3天更换培养基。

03 细胞何时进行传代较好?

一般情况下细胞生长至完全汇合后就应该传代,所有细胞生长都有一个要求不宜生长过密(也就是常说的长老了),但有接触抑制的细胞,在汇合前就必须进行传代,这类细胞一般在密度70-80%就进行传代,否则会引起细胞分化。

04 贴壁细胞如何进行传代?

去掉原T25培养瓶里面的培养基,T25瓶加3-4 ml PBS洗1-2次;弃PBS,再加1.5 ml的Trypsin-EDTA (1X)消化液消化细胞,显微镜下观察,待细胞变圆,细胞间隙明显,部分细胞刚开始脱离瓶壁,加4 ml左右完全培养液混匀终止消化,将细胞小心吹打下来,1000 rpm/min室温离心5min;弃上清,细胞沉淀用完全培养液重悬,按要求分瓶(视细胞密度而定1:2-1:3,1:3-1:6,1:6-1:8),每T25瓶补足培养基至5-6 ml,37℃、5%CO2孵箱培养。

05 悬浮性细胞应如何传代处理?

一般仅需持续加入新鲜培养基于原培养角瓶中,稀释细胞浓度即可,若培养液太多时,将细胞悬液移入离心管中,1000 rpm/min 室温离心5 min。弃上清,细胞沉淀用完全培养液重悬,按要求分瓶(视细胞密度而定1:4-1:8),每T25瓶加完全培养液至4-5 ml,37℃、5%CO2孵箱培养。有些悬浮细胞趋于成团生长,此时细胞生长状态良好,当补液时,需避免反复吹打。

06 贴壁细胞传代如何使用胰酶?

一般使用trypsin-EDTA浓度为0.25% trypsin-0.53 mM EDTA.2Na或0.05%trypsin-0.02 mM EDTA.2Na。消化液浓度过高时,易造成培养基中细胞碎片增多,黑渣子增多,常规细胞传代时建议用0.05%的胰酶进行消化,对于难消化的细胞可采用0.25%胰酶进行消化,细胞密度过高超过80%时,采用分步消化法。胰酶储存在–20°C,解冻在4°C进行,第一次开瓶后应立即少量分装于无菌试管中,保存于–20°C,避免反复冷冻解冻造成trypsin之活性降低,并可减少污染之机会。

07 如何控制胰酶消化时间?

胰酶消化的程度是细胞培养中的一个关键步骤:消化过度细胞碎片增多,黑渣子增多,细胞会成片脱落,严重影响细胞活性,并有部分细胞漂浮,随弃去的胰酶流失;消化不足则细胞难于从瓶壁上吹下,反复吹打同样也会损伤细胞活性。

不同细胞对消化液的敏感性不同,胰酶消化的时间也会有差异。胰酶消化时间与胰酶的浓度,是否含EDTA,胰酶的储存时间,胰酶的储存温度,是否反复冻融,消化加入的胰酶体积,消化温度及细胞的密度有关。消化对于新购买的细胞,建议客户先用低浓度的胰酶仔细去摸索一下消化时间,可每隔1分钟镜下观察细胞是否变圆,记录最佳消化时间,下一次操作参考之前的记录来控制时间即可。

08 细胞离心下来的离心速率应为多少?

细胞传代或冻存时欲回收细胞,其离心速度一般为800-1000 rpm/min,室温离心5-8分钟,转速过高,将造成细胞破裂死亡。

09 如何区分活细胞和死细胞?

显微镜下观察:活细胞中间透亮,饱满,有光泽,死细胞较暗。也可以通过台盼蓝染色来计算细胞活力。

10 如何用台盼兰计数活细胞?

用无血清培养基把细胞悬液稀释到200~2000 个/毫升,在0.1 毫升的细胞悬液中加入0.1 毫升的0.4%的台盼兰溶液。轻轻混匀,用血球计数板计数细胞。活细胞排斥台盼兰,因而染成蓝色的细胞是死细胞,注意计数需在加入台盼蓝10min内完成。有细胞计数仪的,可直接用计数仪进行。

11 二价离子抑制胰蛋白酶活性吗?

二价离子的确抑制胰蛋白酶活性。

12 使用胰蛋白酶加入EDTA是为什么?

EDTA用来螯合游离的镁离子和钙离子,以便保持抑制胰蛋白酶的活性。建议胰蛋白酶处理细胞前,用EDTA清洗细胞,以消除来自培养基中所有的二价离子。

13 可否使用与原先不同的培养基?

不能。每一细胞株均有其特定使用且已适应的细胞培养基,若骤然使用和原先提供之培养条件不同之培养基,细胞大都无法立即适应,易造成细胞状态不好,最终造成细胞无法存活。

[图片上传失败...(image-efba9e-1634632859867)]

14 可否使用与原先不同的血清种类?

不能。血清是细胞培养上一个极为重要的营养来源,所以血清的种类和品质对于细胞的生长会产生极大的影响。来自不同物种的血清,在一些物质或分子的量或内容物上都有所不同,血清使用错误常会造成细胞无法存活。

15 细胞为何生长不均匀?

细胞传代后放入培养箱没有摇匀,或者放入时摇匀,但在细胞贴壁前,又移动了培养瓶,频繁开关培养箱引起的振动或者培养瓶中培养液过少,培养箱搁板表面不平整,这些因素会导致细胞生长不均匀。

16 购买的细胞死亡或细胞存活率不佳

研究人员在细胞培养时出现存活率不佳,常见原因可归纳为:培养基使用错误或培养基品质不佳。血清使用错误或血清的品质不佳。运输过程对细胞有严重影响。解冻过程错误。冷冻细胞解冻后,加以洗涤细胞和离心。悬浮细胞误认为死细胞。培养温度使用错误。细胞置于–80°C太久。

17 细胞抱团怎么处理?

一些悬浮细胞抱团生长是正常现象,大部分悬浮细胞在细胞密度很高的情况下,很可能会出现部分细胞抱团生长的现象,聚团细胞很容易死亡并演化成絮状物,殃及周围的悬浮细胞,因此在培养悬浮细胞时需控制好细胞密度。如果出现了细胞团,可以通过细胞筛去掉部分较大的细胞团,也可以尝试一下方法:将细胞悬液收集到15 ml离心管中,静置20 min左右,小心取上层细胞上清培养(该方法只能去除部分较大的细胞团)。

18 细胞内有空泡,是否是正常现象?

部分细胞本身存在一定的空泡(如HepG2,Ishikawa及一些耐药株等),这个是正常现象。如果只有少数细胞有内出现极少空泡,则很可能是细胞状态不佳,可以通过调整血清浓度,控制消化,控制传代比例及时间等方法来调整细胞状态;如果大部分细胞出现空泡,且单个细胞内空泡数目偏多,则可能细胞代次较高,细胞老化所致,需更换代次较早的细胞。

19 细胞传两代后开始逐渐死亡的原因

很可能是培养体系不适合细胞(未使用推荐的培养体系);或者消化过度,对细胞有严重影响;或者是传代比例不合适(具有密度依赖性的细胞,传代太稀;或者生长较快的细胞,传代较密,细胞严重堆叠生长)。

[图片上传失败...(image-bcf360-1634632859867)]

20 细胞生长逐渐变慢是什么原因?

细胞增殖变慢有以下原因:1. 消化过度 2. 传代过密 3.细胞营养不良 4.细胞频繁传代 5.细胞状态不佳或老化 6.细胞存在污染。

21 培养细胞时应使用5%或10%CO2?

一般培养基中大都使用HCO3-/CO32-/H+作为pH的缓冲系统,而培养基中NaHCO3的含量将决定细胞培养时应使用的CO2浓度。当培养基中NaHCO3含量为每公升3.7 g时,细胞培养时应使用10% CO2;当培养基中NaHCO3为每公升1.5 g时,则应使用5% CO2培养细胞。

22 CO2培养箱之水盘如何保持清洁?

定期(每周一次)更换水盘里面的水,水盘的水必须使用无菌蒸馏水或无菌去离子,水盘中可添加1%硫酸铜以预防霉菌污染。

23 细胞接种密度多少合适?

依照细胞株基本数据上的接种密度或稀释分盘的比例接种即可。细胞数太少或稀释的太多亦是造成细胞无法生长的一个重要原因。按照我细胞免疫怎么查们的经验:一般倍增时间24 h内的细胞,传代比率1:6-1:12为宜,倍增时间24-48 h的细胞,传代比率1:3-1:8为宜,倍增时间超过48h的细胞, 传代比率1:2-1:4为宜。

24 培养中常出现一些黑点,是污染吗?

首先肉眼观察培养液是否变浑浊,如果变浑浊,基本可以确定是污染;如果肉眼观察培养液没有变浑浊:在显微镜下观察黑点大小和形状是否规则,是否运动,是做布朗运动还是呈直线型快速移动。如果黑点大小不规则,做布朗运动,黑点可能是细胞碎片(可能是细胞状态不佳或者消化过度引起的),也可能是血清反复冻融产生的蛋白沉淀引起的,也可能是细胞的代谢产物。如果黑点大小一致,快速移动,很可能是细菌污染。

25 如何预防细胞培养中黑点的产生?

掌握细胞传代的最佳时机,不要细胞长老了再传代;掌握好消化时间,防止消化过度产生细胞碎片;减少血清等试剂的冻融次数;将培养液的PH调到最佳;严格控制水质和器皿的清洁。

26 黑点已经产生了,如何进行处理?

如果判定黑点是污染,请及时将细胞处理后丢弃。其他情况,可参照以下进行:

如果是悬浮细胞:收集细胞上清慢速离心(500-600 rpm/min,5-6 min)并更换新的培养瓶;如果是贴壁细胞:将细胞用PBS洗2-3遍,洗的时候,轻轻拍打培养瓶,让贴壁不牢的碎片和颗粒脱落,再弃去PBS,消化时先加低浓度的胰酶如0.05%胰酶消化1 min左右,让细胞间隙中的颗粒和碎片脱落下来,去掉低浓度胰酶,然后正常消化细胞,将收集的细胞悬液慢速离心(500-600 rpm/min,5-6 min)并更换新的培养瓶,并可以尝试适当增加血清浓度进行培养。

27 培养用dish,flask是否相同?

不同厂牌的dish或flask,其所coating的polymer不同,制造程序亦不同,虽对大部分细胞没有太大之影响,惟少数细胞则可能因使用厂牌不同之dish或flask而有显著之生长差异。

不同来源的间充质干细胞有什么异同

来源不同,间充质干细胞来源于中胚层,ES来源于内细胞团。分化潜能不同,间充质干细胞尽管可以跨胚层分化,但能力有限,ES可以分化成除胎盘以外的所以类型细胞。细胞形态不同,间充质干细胞成梭形,漩涡状生长,ES生长紧密,核质比大,上皮样。增殖速度不同,间充质较ES增殖稍慢。……

间充质干细胞的主要特性

间充质干细胞(MSCs)是属于中胚层的一类多能干细胞,主要存在于结缔组织和器官间质中,以骨髓组织中含量最为丰富,由于骨髓是其主要来源,因此统称为骨髓间充质干细胞。骨髓间充质干细胞具有以下特性:

一、具有强大的增殖能力和多向分化潜能,在适宜的体内或体外环境下具有分化为肌细胞、肝细胞、成骨细胞、脂肪细胞、软骨细胞、基质细胞等多种细胞的能力。

二、具有免疫调节功能,通过细胞间的相互作用及产生细胞因子抑制T细胞的增殖及其免疫反应 ,从而发挥免疫重建的功能。

三、具有来源方便,易于分离、培养、扩增和纯化,多次传代扩增后仍具有干细胞特性,不存在免疫排斥的特性。

四、面目模糊,表面抗原不明显,异体移植排异较轻,配型要求不严格。

正是由于间充质干细胞所具备的这些免疫学特性,使其在血液病治疗方面具有广阔的临床应用前景。通过自体移植可以重建组织器官的结构和功能,并且可避免免疫排斥反应。

如何看待影响间充质干细胞疗效的几大因素

MSC的临床研究风风火火开展了许多年,却无法取得可信服的治疗结果。研究者开始冷静反思:具有治疗功能的间充质干细胞为何会临床治疗无效?

间充质干细胞(MSC)是临床应用的明星之一,已经有很多很多报道间充质干细胞尝试治疗多种疾病。这里说的能“治疗”多种疾病,但不代表MSC就是这些疾病的最佳或唯一选择,也不代表MSC能治好这些疾病,只能说有研究者尝试过MSC治疗这些疾病。有些确实就没有效果,有些效果还挺不错。如果没效,那就探讨是否属于适应症,MSC并非包治百病;如果有效,那就探讨如何优化,做到最佳。

影响MSC的疗效,有很多因素,本文主要几个关键影响因素;其他影响因素还包括疾病类型、疾病进程、实施医生的医疗技术、医院整体实力水平等等。

MSC相关的关键影响因素:细胞质量、注射途经、最佳剂量、治疗时机。大概这四个因素。

1,细胞质量

不同厂家生产出来的同一种药物,质量之间存在一些差异,尤其是进口药和国产药相比较,我国内有备案的外泌体生产厂家相信大家都没什么意见。同样的情况也存在不同的干细胞公司。

先来大概定义一下 “细胞质量” 指的是什么?

我认为细胞质量指单位细胞或单个细胞所对应的生物学效力;效力越高,细胞质量越好。那么,什么是生物学效力(Biological Efficacy,也可以缩写为bio-efficacy)?

先来理解什么是效力,英文单词是efficacy,不是effectiveness,effectiveness是指效果。

效力包括强度(strength)和效果(effectiveness)两个因素,即相同强度(一般指浓度)下所取得的效果。因此,我们谈效力的时候,一定是要明确到做具体的事情。效力这个概念广泛用于生物界,包括杀虫剂、药物。这个概念也引用到干细胞领域。比如《干细胞制剂质量控制及临床前研究指导原则(试行)》就提到生物学效力试验用于判断干细胞制剂与治疗相关的生物学有效性。

因此,讨论MSC的细胞质量或生物学效力,就离不开具体的适应症。我们应该在一个适应症范围内谈论这个效力如何如何。比如,MSC同时具有免疫抑制和促进血管再生的功能,分别治疗两大类不同的疾病,那么相对应的就有两个生物学效力指标。

但是,现在的MSC基础和临床研究尚未进入这个细分的领域,这里就笼统的谈一谈细胞质量和哪些因素相关。

有一些参数可以反映间充质干细胞的质量,比如细胞活率、供体特性、克隆形成能力、细胞大小、免疫抑制能力和细胞因子分泌量。这里简要介绍细胞活率和供体特性。

1、细胞活率(cell viability)

这个好理解。就是MSC进入人体之前,MSC针剂里还有多少MSC是活的?在文献中明确提及MSC的细胞活率的情况不多见。不同的临床研究所用的细胞活率有所不同,细胞活率有80%,有85%,有88.2± 6.1%,有90%-97%,有92%,有95%,还有存在70%的情况。不少国外的文章提到的细胞活率低于90%,所以别惯性思维地认为国外的干细胞质量就是好。

活率90%以上的细胞制剂和活率只有70%的细胞制剂,相同的疾病情况下,治疗效果难免会有较大的差异。毕竟,MSC需要活着,而且还要扛过肺部的清除,才能很好地发挥治疗作用。

所以,细胞活率真的很重要!

2、供体特性

供体特性包括 “供体年龄”和“供体的身体状况”。

(1)供体年龄

供体年龄是一个很重要因素,因为来自年轻供体的MSCs似乎具有更大的活力、增殖潜力和抗氧化能力,而年龄较大的成年来源的MSC具有较低的增殖能力。从年龄上来讲,脐带、脐带血和胎盘应该最具优势,乳牙牙髓次之,而骨髓和脂肪就相对年龄大点了。我个人非常不建议45岁以上的人群作为MSC的供体去抽骨髓和吸脂肪来获取MSC。

年龄越大,在骨髓中的干细胞就越少:刚出生时,骨髓1万个单个核细胞中就有1个是MSC;30岁时,MSC的数量减少到骨髓25万个单个核细胞中才有1个MSC;到80岁时,MSC的数量就更少了,骨髓200万个单个核细胞才有1个MSC。

性别可能对MSC的某些功能有影响。比如有研究显示女性来源的MSC表达更高水平的IFN-γR1和IL-6β,从而具有更强的免疫抑制能力。

那么,不同来源之间的MSC有什么功能特性上的差异?

不同组织来源的MSC具有某些差异性,主要体现在MSC的增殖速度、分泌的细胞因子谱和免疫调节能力。

(2)供体的身体状况

有不少研究证明疾病也会影响自体间充质干细胞的功能,尤其是一些自身免疫性疾病患者,其自身骨髓的MSC出现功能异常,包括增殖速度减慢、克隆形成能力降低、免疫抑制能力下降、分泌生长因子的数量减少等等病理变化,使得患者自身骨髓MSC不适合用于自己疾病的治疗。

理论上,有可能存在某种先天性基因变异,导致MSC的功能出现缺陷,那么患者出生时的脐带、脐血和胎盘来源的MSC也不适合自体治疗。但是,目前还没见到这样的文章报道,只是理论上存在这种可能性。

是不是所有的患者骨髓MSC都有病变?估计也不是,可能疾病早期,患者骨髓MSC的功能并未受到损伤。

先有疾病,后导致骨髓的MSC出现功能缺陷?还是先出现MSC的功能缺陷,后导致疾病的发生?这是一个很有意思的课题,有待科学家们的努力。

2,注射途径

临床应用的报道很多很多,本文着重讨论临床研究的人体数据,略带动物研究的数据。

动物实验和临床研究中间充质干细胞经不同的注射途经进入体内的分布动力学内容,并根据大量的体内分布数据,提出非著名的比喻性质的论断:米饭能填饱肚子,但是一粒米饭能填饱肚子吗?

期待干细胞临床研究工作者,认真思考这个非著名的论断,好好设计间充质干细胞的临床研究方案。

MSC在人体内分布的研究数据极少,估计是考虑到标记物的安全性问题。

1、静脉注射(全身性输入)

静脉注射是最常用和最简单的途径,并且允许输入大量的MSC。

静脉注射最大的弊端就是肺部能清除超过60%的MSC,造成趋化到损伤部位发挥治疗作用的MSC数量减少。这是为何?肺血管系统的特性,允许直径小于5μm的微粒或细胞完全通过,而阻挡大部分直径超过20μm的微粒或细胞。人脐带来源的MSC细胞直径大部分集中在14-20μm的范围。

人脐血来源的MSC比人骨髓MSC容易通过肺脏,而且年龄越大的供体,其骨髓MSC越容易在小鼠肺部滞留;在肺部滞留的MSC细胞数量,与MSC细胞表面表达的整合素α4和α6密切相关,表达量越高,越不容易在小鼠肺部滞留。但是,如果MSC联合整合素抗体给患者使用,那么需要评估整合素抗体静脉注射所带来的风险。

在两项小型人体临床研究中,使用铟标记的MSC外周静脉输入患者体内,尽管早期在肺部发现了大部分信号,但48小时后大部分信号转移到脾脏和肝脏。MSC静脉输入体内10天后,至少尚有约50%的MSC存留在体内发挥作用,而肺部只有不到5%的滞留量。

因此,我们不能单独依靠动物研究,需要结合临床研究来优化MSC的最佳治疗方案。

有意思的是,给大鼠静脉注射MSC后,96小时后给与检测,低氧环境增加MSC在肺部的滞留,而减少MSC在肝脏、脾脏和肾脏的数量。

以此看来,患者使用MSC时,最好是提高肺部的血氧分压,至少是正常氧气含量的环境里。

2、局部介入注射

局部介入注射,包括联合生物材料的应用(例如用于矫形障碍的骨支架)、用于神经系统疾病的脊髓鞘内注射、用于呼吸系统疾病的气管内注射,都有利于MSC避开肺部的清除。

(1)脊髓鞘内注射

MSC应用的另一个常见输入途经是脊髓鞘内注射。

MSC的脊髓鞘内注射常见于治疗神经病变类疾病,包括中风、脑瘫、自闭症等,并且此技术亦可以应用于大多数儿童(包括早产儿)。

据报道,脐带来源的MSC鞘内注射到8对伴有脑瘫的双胞胎患儿,所有患者间隔3-5天接受4次鞘内注射,每次(1.0-1.5)×10*7个MSC,经治疗6个月后运动功能明显改善。另一临床研究显示异体MSC进行静脉和/或鞘内注射,可以提高脑瘫患儿的肌张力、力量、语言、记忆、认知能力等。

全身麻醉下鞘内注射MSC时,会出现与输注相关的不良反应,发烧和呕吐最常见,甚至出现比较严重的癫痫发作;但所有症状在72小时内自发消退,在6个月的随访期内没有出现进一步的并发症。有推测发烧和呕吐可能与全身麻醉有关。

(2)脑实质内微注射

在MSC治疗脑瘫的临床研究中,研究者评价了鞘内注射联合脑实质微注射MSC治疗脑瘫的可行性和有效性。在这个临床研究中,自体骨髓MSC在体外培养至4-5代,每次注射使用2X107的MSC剂量;所有患者均接受鞘内MSC,但年龄较大或头颅较大的患者(5岁或头围50 cm或更大),先接受2次鞘内注射,再进行立体定向手术接受了脑实质内MSC微注射治疗;所有患者的总运动功能评分均有不同程度的提高,但脑实质内微注射并未带来额外的益处。研究者只是观察到短暂的低温和伤口疼痛,但没有更严重的不良事件。

骨髓MSC在大脑缺血区域周边局部注射治疗中风(发病超过6个月)的临床研究,共18名患者,所有患者不开展康复治疗,经过1年的观察和评价(ESS、NIHSS、mRS和F-M总评分和运动功能评分),各种评分得到改善;但是,所有的患者都出现了不同程度的由于局部注射导致的副作用(经分析和MSC无关),包括头疼、恶心呕吐、抑郁、肌张力增高、疲劳、血糖升高、C反应蛋白升高。

所以,谨慎考虑脑局部微注射MSC这种治疗方式!

(3)气管内注射

早产儿常伴随着支气管肺发育不良(BPD)的风险。一个小规模的临床实验验证MSC干预早产儿BPD的可行性。这9名平均妊娠25.3周的早产儿的平均体重为793克;前3名BPD患儿的MSC剂量为1X10*7/kg,后6名BPD患儿的MSC剂量为2X10*7/kg;治疗7天后,支气管分泌液中的炎症因子浓度明显下降,呼吸严重程度评分(Respiratory Severity Score)改善明显。

发生BPD风险的婴儿通常需要在出生时或出生后不久进行气管插管以进行机械通气和表面活性剂替代治疗,为MSC治疗提供了简便的输入途径。然而,目前的临床实践是在婴儿的医院疗程(通常是几天)中比在历史上(数周至数月)更早地移除气管导管。在这种情况下,MSC的静脉注射可能是气管内输入的可接受的替代方案,因为即使静脉输入MSC,MSC也可能被“捕获”在肺血管系统中。

(4)结合生物支架

干细胞结合生物支架治疗难治性疾病,尤其是神经损伤性疾病,是一个新的治疗手段。关于这方面的详细内容可参考本公众号的文章《盘点:再生医学中干细胞和新材料的研究和应用》和《生物材料:让干细胞再生疗法离现实更近》。

有报道使用自体骨髓MSC联合脱矿骨基质支架,3个月后能实现约50%的骨缺损填充,不适合普遍临床应用。另外,也有研究显示在没有骨支架的情况下实现了79.1%的填充,但使用的MSC在体外经过成骨诱导的培养处理,表明细胞比其支持结构更重要。使用供体骨作为生长刺激因素可能有助于MSC用于颅骨重建。

南京鼓楼医院开展临床研究,MSC结合胶原支架进行子宫内移植,治疗子宫腔黏连,30个月后,26名患者中的10名成功受孕,8名孕妇顺利产下宝宝,1名孕妇怀孕3个月,1名孕妇出现自然流产。

MSC结合生物支架,是一个很好的应用方向,有待更好的研究进展!

3,最佳剂量

MSC的最佳剂量取决于不同的疾病和严重程度以及输入途径。

在MSC的临床研究和应用中,细胞剂量可能属于最无厘头的和最体现不出科学性的一个环节了,即使有一些临床研究涉及剂量爬坡实验,但也不是基于动物实验的基础。

由于MSC和传统药物的特性差异巨大,具体表现至少有2点。①在MSC进入体内后,不符合传统药物典型的分布和代谢模型;传统药物属于被动分布,而MSC具有主动趋化到损伤部位的功能,MSC在健康机体和疾病机体的体内分布也不一样。②传统药物的动物实验需要多次给药维持稳定的血药浓度,而MSC的动物实验常常是单次注射,以至于MSC的临床研究也常常采取1次注射的方案。实际上,MSC的单次注射并不能取得良好的稳定的长期的治疗效果,即使短期内有明显改善。

对于某种疾病,在临床前的研究中,动物实验并没有充分证明MSC起效的最低剂量和最大饱和剂量,而且不同实验室的细胞剂量存在差异。不同实验室的培养系统、MSC的来源属性等因素,常常导致MSC的质量存在差异,直接影响了MSC的动物实验和临床研究的结果(见下图)。因此,MSC的临床前研究的数据并不能很好地指导临床研究的方案确定。

在目前的临床研究中,MSC的使用剂量范围非常大,每名患者使用的MSC细胞数从四千多个MSC到上亿个MSC不等。

局部介入的治疗方式,最低的剂量出现在MSC治疗股骨头坏死的临床案例中,韩国和法国各一项临床研究用量为4500多个MSC。介入治疗最高的剂量出现在中国的一项临床研究,为MSC治疗糖尿病肢体大疱病,细胞用量为8.6亿;第二高剂量为2亿个MSC心肌注射。局部注射的MSC用量超过1亿的临床研究还有:1.2亿MSC治疗克隆氏病肠瘘、1亿MSC关节腔注射治疗膝骨关节炎的、1亿MSC治疗缺血性心肌病。

静脉输入的细胞剂量相对比较稳定,常常采用每公斤体重数百万级的MSC,即(1-10)x10*6/kg。静脉输入最高的剂量为与造血干细胞造血干细胞共移植的10x10*6/kg,按照60公斤的体重,那也是需要6亿个MSC了;还有治疗GVHD的8x10*6/kg。静脉输入最低的剂量出现在MSC和造血干细胞共移植的临床实验中,为0.3x10*5/kg。

2009年Prochymal(骨髓MSC)治疗难治性GVHD的3期临床试验的失败,是MSC临床应用的一个灾难性事件,几乎否定了MSC的临床疗效。Prochymal来源于健康人的骨髓,而MSC本身具有很强的免疫抑制能力,然而,为何Prochymal却在3期临床试验中因疗效不能明显优于对照组?

当时Prochymal的适应症为激素抵抗性难治性GVHD,本身这个适应症就是非常棘手,如果Prochymal不优化治疗方案,尤其是剂量方面突破常规思维,那么失败在所难免。

后来提高MSC细胞剂量到5x10*6/kg和8x10*6/kg,治疗激素抵抗性难治性GVHD的效果优于2009年之前的疗效,使得英国和欧盟的治疗指南推荐MSC作为治疗2-4级急性GVHD的三线治疗药物。但是Prochymal依然未得到美国FDA的认可。有意思的是,2016年有一篇Meta分析的文章提出 “剂量”这个因素并未影响MSC治疗急性GvHD患者的生存率。

虽然有专家认为5x10*6/kg和8x10*6/kg为高剂量,但是目前尚未对何种剂量定义为“高剂量”进行讨论和证明。如果把MSC看作为“药品”,那么肯定存在一个范围,在这个范围内,剂量越高效果越好;然后达到一个饱和剂量后,继续提高细胞剂量,并不能带来更多的疗效,反而可能带来一些不良反应。

文献分析标准:①临床研究文章来源于pubmed和clinicaltrials;②只分析临床研究中是用“间充质干细胞(MSC)”的文章,不采用骨髓或脐带“单个核细胞(MNC)”的文章。

4,治疗的时机

MSC输入的时间也很重要:MSC应该是预防还是治疗?

疑难重症的治疗中,MSC被寄予厚望;但这些疑难重症的疾病模型难于模拟临床实际情况。动物实验中,经常是刚刚注射完诱导疾病建立模型的药物后,就立即给与MSC治疗。比如MSC治疗急性肝衰竭的猪实验,在注射诱导疾病的药物2小时内给与MSC经肝门静脉介入治疗,效果非常显著;还有小鼠实验,用四氯化碳诱导急性肝衰竭,24小时内即刻给与MSC脾内注射治疗。

在临床研究中,也存在疾病尚未出现时给与MSC治疗的情况。MSC和造血干细胞共移植最为常见,MSC能减少造血干细胞移植后出现排异反应(GVHD)和增加造血干细胞移植的存活率,非常适合异体造血干细胞移植(骨髓移植)中配型达不到6个位点配对的情况。这时候,MSC起到辅助治疗的角色,为造血干细胞移植治疗保驾护航。

MSC促进糖尿病足的愈合,而且溃疡面的愈合并不伴随着疤痕组织的增生,这提示MSC能抑制疤痕组织增生,不仅适用于皮肤创伤的治疗(包括整形外科),还适用于开创性手术预防术后疤痕增生,比如最常见的腹腔术后肠粘连。需要注意的是,MSC的应用时机,因为MSC并不能消除疤痕组织,只是预防疤痕组织的出现。

细胞类药物和传统化学药物非常不同的一点,那就是细胞是活的,而化学药物是死的。MSC作为活的细胞,进入到机体,必定会与机体内的微环境相互作用。微环境有利于MSC更好地发挥治疗作用,还是限制了MSC的治疗功能?本公众号的《如何看待微环境对间充质干细胞治疗的影响?》一文对这些问题进行了深入探讨和分析。

在这里简而述之,那就是在病理状态下,缺血缺氧微环境有利于MSC分泌更多的生长因子,而且炎症因子(TNF-α和IL-1β)能促进MSC分泌细胞因子(IL-1A、RANTES、G-CSF),但是总体来讲,炎症环境对MSC的影响是弊大于利。因为炎症因子同样能导致MSC死亡,炎症环境还能提高MSC的HLA-DR(MHC II类抗原)抗原的表达,增强了MSC的免疫原性,被免疫细胞所识别,加速了MSC的清除。

国内的一项MSC治疗肝衰竭的临床研究中发现,肝衰竭体内过激炎症反应的环境抑制了MSC的活性,限制其治疗肝衰竭的疗效;相反,较低的体内炎症环境有益于MSC定植、存活和肝细胞再生。国内的另一项MSC治疗类风湿性关节炎的临床研究,研究者先给患者注射剂鹿瓜多肽、丹参酮Ⅱa前期干预治疗7天,再给与MSC治疗;和单独的MSC治疗组相比,鹿瓜多肽和丹参酮Ⅱa前期干预后再联合MSC治疗,具有更显著的治疗效果,包括降低炎性细胞因子、调节免疫、改善微循环和病损组织的修复[4]。

又比如,国外的多中心临床研究,在用骨髓MSC治疗类固醇无效的儿童GvHD的临床试验中,在疾病病程早期(开始类固醇治疗后5-12天)使用MSC治疗比较晚期治疗(开始类固醇治疗后13-85天)的疗效更好(完全有效率78%对52%)。

MSC也被应用于肾脏器官移植的临床研究中,发现在移植前给与MSC输入治疗,有利于减少器官移植后出现的排异反应,促进器官移植的成活率和恢复器官的功能。当然,在肝脏移植后出现免疫排异反应,MSC也是可以发挥免疫抑制作用。

这些临床研究的结果给我们一个很明显的提示,那就是MSC的治疗时机非常重要,甚至会影响到治疗效果,虽然研究治疗时机对疗效影响的临床研究极少。

随着疾病从发病到急性发展到慢性阶段,临床过程中可能存在一个时间窗,适合MSC发挥最佳的治疗功能。

更重要的是,不应该期待MSC单独治疗就能发挥良好的治疗效果,疑难重症都需要综合治疗。那么,MSC是主力发挥治疗作用还是辅助治疗?这很可能取决于具体的疾病。比如造血干细胞治疗血液肿瘤,造血干细胞是主角,MSC是辅助治疗;器官移植,MSC也是辅助治疗。免疫排异反应(包括GVHD和器官移植的排异反应)的治疗中,MSC就是主角,发挥主力治疗作用。

5,小结

MSC具有多重功能,比如有免疫抑制功能、促进机体组织器官的修复功能、促进血管新生/再生、支持造血干细胞的增殖和分化等,因而MSC的临床适应症比较广。

甚至有大鼠实验发现MSC能增强机体抵抗细菌的感染和促进细菌的清除。一项MSC治疗难治性艾滋病的临床研究显示MSC能增强抗HIV病毒药的效果。因此,MSC治疗难治性细菌和病毒感染方面,也是一个有意思的研究领域。

MSC还能给我们带来什么样的惊喜?

因此,MSC治疗的核心问题不是“MSCs治疗有效吗?”而是:“我们如何优化MSC疗法的疗效,同时避免不良反应?

发表评论

评论列表

  • 这篇文章还没有收到评论,赶紧来抢沙发吧~