肝卵圆细胞和肝干细胞(肝细胞与肝脏细胞)
本文目录一览:
肿瘤干细胞与卵原细胞的关系?肝癌的发生与之有关吗?
正常的胚胎干细胞是受机体严格控制的,哪些基因的表达与关闭,信号通路的激活与抑制,到了成人,只存在极少的部分分化的干细胞。
不同器官的肿瘤中陆续发现有大量异常的干细胞,比如肝癌干细胞,是术后复发的重要症结。对于肝癌干细胞的来源,有不同的学说,有认为是直接从正常肝干细胞逃离调控而来,也有认为是已分化肝细胞在基因突变,调控紊乱情况下经过反分化而来。目前没有定论。肝癌干细胞与肝干细胞类似,但不一样,肝干细胞是可控的,是肝保持其再生性所必须的。
目前有很多生物医学实验室在研究肿瘤干细胞的分子标记,比如很有名的CD24,CD133等,希望用于手术中肝癌干细胞的指示。
肝细胞分为哪些种类?
你是不是想问“干细胞”的种类?
一下是肝细胞的资料:
肝细胞hepatocyte,hepatic cells,liver cells
LM(光镜):多面体形;核大而圆,居中,常染色质丰富,部分有双核或多倍体核;胞质嗜酸性,含弥散分布的嗜碱性团块
EM(电镜): (1)有三种功能面→血窦面 →胆小管面 →细胞连接面:有紧密连接、桥粒、缝隙连接 (2)细胞器发达 粗面内质网:合成白蛋白、纤维蛋白原、凝血酶原、脂蛋白和补体等血浆蛋白 滑面内质网:参与生物转化和代谢,如胆汁合成、脂类代谢、糖代谢、激素代谢和有机异物的转化 高尔基复合体:参与蛋白的加工和胆汁排泌 线粒体、溶酶体和过氧化物酶体丰富 (3)含糖原、脂滴、色素等内涵物
肝细胞核
肝细胞核主要由去氧核糖核酸(DNA)和组蛋白等组成。去氧核糖核酸是遗传的物质基础,它有复制遗传信息的功能。患肝炎时,肝炎病毒侵入肝细胞核内,病毒基因可以与肝细胞核中去氧核糖核酸相结合(整合)。一旦整合,HBsAg即难以清除,致使HBsAg长期携带。此外,去氧核糖核酸还可能以自己为模板合成信使核糖核酸(mRNA),从而控制细胞质中各种相应蛋白质的合成。肝细胞核如果明显受损,就意味着整个肝细胞崩解毁灭。
线粒体
肝细胞的线粒体很多,每个细胞大约有1000个左右,遍布于胞质内。肝小叶不同部位肝细胞内线粒体的大小和形态不完全一致,在正常生理条件下,多为圆形和卵圆形,直径0.4-0.8μm。线粒体的共同基本形态结构特征是外被双层界膜--外界膜和内界膜,内界膜向线粒体内部伸展转折,形成许多嵴。内界膜将线粒体分隔为内、外两室,外室介于内、外界膜之间,内室则围于内界膜之间,其中充满基质。 肝细胞在线粒体嵴的表面和内界膜的基质面上附有密集排列的、火柴头状的亚单位,称为基粒。其粒由约10nm的球形头部与宽约3.5nm、长约5nm的短柄构成。头部伸入基质,相当于ATP合成酶所在处,是氧化磷酸化最终合成ATP酶的一部分。柄的一端与嵴的界膜相连,是一联接蛋白,脂类和氨基酸在线粒体内被氧化成水和二氧化碳,所释放的能量则通过这种连接蛋白转给ADP生成ATP。线粒体的亚单位只有在特殊处理的标本中,如将线粒体由细胞匀浆中分离出来,并用低渗法破坏其界膜,使其嵴暴露,再用磷钨酸复染,方可看到。而普通超薄切片则见不到这种亚单位,这是因为锇酸固定时,球形头部被解聚所致。
线粒体内外界膜的通透性和化学组成互不相同。外界膜对大多数分子量小于10000的低分子溶质而言,均可自由通过,而内界膜则仅允许不带电荷、相对分子量小于150的小分子如水、O2、CO2、尿素及甘油等通过,葡萄糖、K+、Na+、Cl-等均不能通过内膜。线粒体基质内常见一些小的电子致密颗粒,称为线粒体内颗粒或基质颗粒。基质颗粒内含Ca2+、Mg2+等离子。
线粒体基质内含有蛋白质(包括各种酶类、类脂质成分、DNA、RNA及核蛋白体),除此之外,还有各种单核苷酸和辅酶。由于线粒体膜和基质内含有大量酶类,如含有进行氧化作用的呼吸链的酶体系,氧化磷酸化酶体系、三羧酸循环及脂肪酸氧化的酶体系等,各种代谢物质在线粒体内氧化,并把放出的能量转换成ATP。因此,线粒体像一个能源中心,一个电力发动站,能向细胞不断提供其生命活动所必需的能量,以保证和推动细胞进行各种复杂的生理功能。 肝细胞的线粒体由于线粒体还含有自身的基因物质——脱氧核糖核酸,称线粒体脱氧核糖核酸(mt DNA)或称染色体外脱氧核糖核酸其含量约占一个细胞全部DNA的2%。此外,线粒体内还含有DNA聚合酶,KNA聚合酶,氨基酸活化酶,tRNA及mRNA。因而能自我复制和合成蛋白质,自行分裂、繁殖和增生。线粒体是细胞内最为敏感的细胞器之一。在许多病理情况下,线粒体常常首先发生各种形态改变,最常见的有线粒体肿胀,线粒体增生、肥大以及线粒体内包含物的产生等。
内质网
肝细胞的内质网很丰富,分布广泛。它与高尔基复合体及核膜共同构成一连续的细胞内网状膜系统。按其囊膜表面是否附着核蛋白体,将内质网分为两类:即粗面内质网及光面内质网。 内质网
粗面内质网
粗面内质网RER形成池(cistem),在其膜外面附着有核蛋白体,据测定,1mg肝组织中所含内质网的总面积约为11m2,其中约2/3为RER。在肝小叶的不同区带其分布是不相同的。肝小叶周边带的肝细胞内,RER尤为丰富。光面内质网则相反,在小叶中央带及中间带肝细胞内较小叶周边带肝细胞内为多。这种数量上的分布差异与小叶不同区带内肝细胞的功能特性有关。在一个细胞中,RER的主要功能为生成输出蛋白(或称分泌蛋白),如血浆白蛋白、α、β球蛋白、纤维蛋白原、凝血酶原等,均在RER上合成。新合成的蛋白质贯穿内质网膜进到内腔,经由运输小泡运至高尔基复合体,在此加工、浓缩、再经分泌泡从细胞表面释放入肝窦内。RER的发达程度反映着肝细胞的功能状态。各种损伤因子引起的肝细胞损伤,亦可反映于RER,其最常见的改变为RER膜上多聚核蛋白体解聚(disaggregation)及脱粒(degranulation)。解聚是指多聚核蛋白体分散为单体,游离分散在细胞质中,或附在粗面内质网膜上。脱粒则指附着在RER膜上的核蛋白体脱落下来,多以单体形式散在胞质之中。如四氯化碳中毒所致肝细胞损害时,可见RER膜上多聚核蛋白体解聚及脱粒,此时,蛋白质合成也聚降。肝癌时,RER数量与肿瘤细胞的生长率及恶性程度之间存在一种反相关关系,在分化较高、生长缓慢的癌细胞中,RER较发达,反之,在分化低,生长迅速的肝癌细胞中,RER则往往很少,而游离的多聚核蛋白体却十分丰富,以适应癌细胞快速生长的需要。
光面内质网
光面内质网(SER)膜上不附有核蛋白体,由分支的小管组成,并与RER相连系,也可由RER形成。SER在肝细胞中具多种功能,如参与糖原代谢、胆汁分泌、脂类代谢、类固醇激素代谢及解毒等。SER常位于胞浆一侧,与糖原颗粒相伴随,若糖原很丰富时,常可遮盖SER使之分辨不清。在饥饿时,糖原减少,肝细胞内SER则较为明显。由于SER含有葡萄糖-6磷酸酶,加之与糖原结构空间的紧密关系,因而更有利于糖原代谢。 SER与胆汁分泌有关,非结合性胆红素从血液进入肝细胞后,经SER上的葡萄糖醛酸转移酶作用,成为水溶性结合胆红素而利于排泄,胆盐也在SER上合成。此外,SER还参与脂肪代谢。血液内游离脂肪酸进入肝细胞后,在SER上酰化成甘油三酯,经与RER合成的蛋白质结合,形成极低密度脂蛋白进入血窦。 肝脏的解毒功能亦在SER上进行。由于SER内含有混合功能氧化酶系,其中终末氧化酶即细胞色素P-450,对许多有害物质如机体代谢产物、药物、致癌剂、杀虫剂等均可加以代谢,从而或被解除毒性,或被转化为易于排泄的物质。由此不难理解,在慢性药物中毒过程中(如安眠药、巴比妥类中毒)可见到SER膜的增生。SER膜的增生还见于长期用抗组织胺药物,口服抗糖尿病药物和避孕药时。SER膜的增生,一般属细胞的一种适应性反应,是功能升高的表现(即酶的诱导)。但并非任何SER的增生均伴有功能的升高,有时往往表现为一种无效增生。在胆汁淤积时,肝细胞内增生的SER则处于低活性状态。表面抗原阳性的乙型肝炎病人,也出现肝细胞内光面内质网增生,在其小管内形成乙型肝炎表面抗原。此时的肝细胞由于含有增生的光面内质网,在组织切片上模糊如毛玻璃,故称毛玻璃细胞。电镜下,可见光面内质网小管中心呈细丝状的乙型肝炎表面抗原。这在诊断上颇为重要。
核蛋白体
核蛋白体(ribosome)又称核糖核蛋白体或核糖体,因首先被Palade在电镜下发现,故又称palade小体。 核蛋白体可游离于胞浆基质中,称游离核蛋白体,亦可附着在内质网膜上,构成粗面内质网。肝细胞具丰富的游离核蛋白体,由60s和40s(S=Svedberg,沉降系数的单位)的大、小二个亚单位组成,呈颗粒状。大亚单位直径约为23μm,略呈锥体形,内含一中央管,底边扁平,有一窄沟。小亚单位略呈弧形(23nm×12nm),一面外凸,一面凹陷;在镁离子存在时,大小亚单位结合成单核蛋白体,此时,小亚单位的凹面与大亚单位的扁平底面相贴,小亚单位的中间分界线正与大亚单位底面的沟相吻合成隧道。 核蛋白体的主要成分为核蛋白体核糖核酸,它们与蛋白质结合,以核蛋白(RNP)的形式存在。 核蛋白体可以单个存在,即单体,也可以由mRNA细丝将它们串联一起,构成多聚核蛋白体。多聚核蛋白体是合成蛋白质的功能基团,mRNA穿行于大小亚单位之间的隧道中,新合成的肽链便自中央管释放出来。当特定的主链形成后,核蛋白体便从mRNA上离去,并分解成亚单位。需要合成蛋白质时,亚单位再行结合,并进一步组成多聚核蛋白体。因此,在细胞质中,核蛋白体的单体和多聚体总是随着细胞的功能状态处于不断结合和分解的动态变化之中。游离核蛋白体合成的蛋白质主要供肝细胞自身生长、分裂、更新所需。
溶酶体
DeDuve于1955年首次在大鼠肝细胞匀浆超速离心后的各组成分中发现溶酶体的存在,后经电镜观察证实。溶酶体是由单层界膜围成的颗粒,其大小形态以及内部结构均极不一致。由于所有溶酶体均含有酸性水解酶,故将此酶作为溶酶体的标志酶。溶酶体借助其所含50多种酶消化、分解各种内生性或外源性物质,因此,可将其视为细胞内的消化器官。肝细胞内所含溶酶体较为丰富,根据其是否含有作用底物而分为两种:初级溶酶体(primarylysosome)和次级溶酶体(secondarylysosome)。
初级溶酶体
此类溶酶体仅含水解酶而无底物,由单层界膜包绕,内含电子致密的均质物,常位于近高尔基复合体处。初级溶酶体在粗面内质网上合成,经运输小泡送至高尔基囊泡进行加工、浓缩,再由高尔基扁平囊分泌面末端膨大、分离而形成初级溶酶体。溶酶体所含水解酶能消化各类大分子化合物。在正常生理情况下,该种酶处于非激活状态,同时,溶酶体膜的内表面还有一层带电荷的糖蛋白,保护膜不受水解酶的作用。而且,溶酶体膜还具有独特的滤过性质,只允许分子量小的物质通过。这就保证了大分子的水解酶不能自由逸出膜外,从而保护细胞免于自身消化。
次级溶酶体
此类溶酶体内除含有水解酶外,还含有相应的作用底物,以及由此形成的消化产物。由于所含底物的不同和消化程度的差异,构成了次级溶酶体形态的多样性。根据消化底物来源的不同,又可将次级溶酶体分为自生性、异生性和兼性三种。
高尔基氏体
电镜下,高尔基复合体(Golgicomplex)由三种基本成分组成即扁平囊泡、小泡和大泡,多位于细胞核与毛细胆 管间的区域内。
扁平囊泡
扁平囊泡(saccule)由一组弯曲呈蹄铁形的扁平囊泡组成,来源于核膜外层。弯曲的囊泡有两个面(凸面和四面),凸面又称形成面(forming face),或称未成熟面(immatureface),靠近胞核;凹面为分泌面(secreting face),或称成熟面(matureface),面向细胞膜。形成面的囊膜较薄,近似细胞膜。因此,高尔基囊泡可视为内质网膜与细胞膜的中间分化阶段。
小泡
小泡(vesicle)数量较多,与一般胞饮小泡相似,常散布于扁平囊泡的形成面,小泡由高尔基复合体附近的粗面内质网芽生而来,并载有粗面内质网所合成的蛋白质成分,后者被运送到高尔基复合体的囊泡形成面,在此,小泡与形成面的扁平囊泡膜融合,蛋白质乃进入囊泡腔中。
大泡
大泡(vacuole)为扁平囊泡末端局部膨大而成,又称分泌泡或浓缩泡,大泡带着由扁平囊泡所生长的分泌物质(如脂蛋白、胆汁成分)断离扁平囊泡,将其运往窦腔或排向毛细胆管。分泌面细胞膜周微丝、微管系统的存在,是这一功能得以实现的必要前提和保证。小泡的并入及大泡的断离,使高尔基囊膜不断处于新陈代谢的动态变化之中。 常见的高尔基复合体病理改变为肥大或萎缩。高尔基复合体肥大多见于分泌障碍并伴有高尔基大泡内分泌物潴留及淤胆等。胆汁成分潴留于分泌泡中;在营养性或中毒性肝脂肪变时,脂蛋白潴留于分泌囊泡中。高尔基复合体萎缩则常见于核蛋白体的合成功能下降状态,如各种毒性因子造成的肝细胞蛋白合成降低时,即常见粗面内质网脱颗粒和断裂。并伴有高尔基复合体的萎缩或消失。
微体
微体是肝细胞内最小的细胞器,为由单层界膜包绕的圆形或卵圆形小体。在肝细胞内,微体与线粒体的比例近乎1:4。微体基质内含有过氧化氢酶和多种氧化酶,如D-氨基酸氧化酶、L-氨基酸氧化酶及L-2-羟基酸氧化酶等,故微体又称过氧体(peroxisome)。
过氧体来源于粗面内质网,形成迅速,从粗面内质网转运出来大约只需一小时便可完成,在细胞内可存在5天,并在4分钟内通过自噬或自溶过程而解体。亦有人认为,微体尚可合并到溶酶体或衍化成线粒体。从微体的发生及其所含酶的特点看,可视为一种特殊类型的溶酶体。从种系发生史上看,微体可被视为一种古老的氧化产能微器官的遗迹,在细胞生物进化过程中逐渐被线粒体所取代。 微体内含有对长链脂酸进行β氧化降解的酶系,故能参与脂代谢。微体内的过氧化氢酶能降解细胞内的H2O2以防止氧化氢引起细胞中毒。微体内的过氧化氢酶和L-2-羟基酸氧化酶能将NADH再氧化,并通过过氧体的α-甘油磷酸脱氢酶,支持果糖的降解。因此,微体和线粒体是协同参与细胞呼吸的细胞器。 微体与微粒体(microsome)很易混淆,但这是两个完全不同的概念。微体是细胞内固有的细胞器,而微粒体则系缀有大量核糖体的内质网碎片,是组织匀浆超速离心后的产物。在病理情况下,可见有肝细胞内微体数目的增多或减少。微体增多可由甲状腺索引发,因而在甲状腺功能亢进患者的肝细胞内,常见有微体数量的增多;反之,甲状腺功能低下时,肝细胞内微体数目则减少。此外,慢性酒精中毒及肝癌时亦均见有肝细胞内微体数目的增多,其意义尚不清楚。
肝细胞实验
肝细胞:68号切片 猪肝,Bouin氏液固定,石蜡切片,HE染色. 低倍镜下找到呈多边形的肝小叶,选择一个肝小叶换高倍镜观察,可见到呈索状排列的肝细胞,呈多边形,有1-2个圆形细胞核,核仁明显,核膜清楚,核内染色质稀疏,染色较浅 观察细胞器与内含物 细胞器与内含物的种类很多,实验课仅观察几种主要的细胞器和内含物在光镜下的形态和位置。各种细胞器和内含物,在一般的HE染色的切片上看不到,须用特殊方法染色显示。 线粒体——示教:3号片 小狗胰脏,Regaud氏液固定,石蜡切片,铁苏木素染色。 线粒体用铁苏木素染色呈黑色,分布于核周围的细胞质中,线粒体在高倍镜下呈粒状、线状或短棒状,或直或曲,轮廓鲜明。 胰脏的分泌细胞呈锥形,核大而圆,位于细胞中央,细胞游离端聚集有许多大而圆的黑色颗粒为分泌颗粒。 高尔基复合体——示教:2号片 狗或猪的脊神经节,Golgi氏亚砷酸硝酸银法镀染。 在切片上有大小不一的圆形脊神经节细胞,胞核不着色,但能看到淡黄色的核仁。核周围的细胞质中有镀染成黑色的网状或颗粒状物,即光镜下的高尔基复合体。 糖元——示教:6号片 猪肝,冷Carnoy氏液固定,PAS反应法显示糖元,苏木素复染胞核。 在高倍镜下,肝细胞中可见到大量紫红色的糖元颗粒或小块,在很多肝细胞中,糖元偏于细胞一侧,此系制片过程造成,生活状态时分布较均匀。
一下是干细胞的分类:
按照功能,干细胞可分为全能干细胞和多能干细胞、专能干细胞。像受精卵就是最高层次的胚胎干细胞,是全能干细胞。根据细胞来源,干细胞可分为胚胎性干细胞和成体性干细胞。目前发现存在干细胞的组织包括:骨髓、外周血、脑、脊髓、血管、骨胳肌,肝、胰、角膜、视网膜等。
按照功能,干细胞可分为全能干细胞和多能干细胞、专能干细胞。像受精卵就是最高层次的胚胎干细胞,是全能干细胞。
多能干细胞,是一种或几种组织的起源细胞,它能分化出多种类型的细胞,但它不可能分化出足以构成完整个体的所有细胞。譬如造血干细胞,它能分化成红细胞、白细胞和血小板等12种血细胞。
专能干细胞来源于多能干细胞,具有向特定细胞系分化的能力,也称为祖细胞。它只能分化成某一种专门的细胞,譬如红细胞。
根据细胞来源,干细胞可分为胚胎性干细胞和成体性干细胞。
胚胎性干细胞通常是指源自囊胚内细胞团的ES细胞。
成体性干细胞是指组织或器官中的特异性干细胞,它们主要用于维持细胞功能的稳态,这些干细胞负责机体的更新和创伤的愈合。目前发现存在干细胞的组织包括:骨髓、外周血、脑、脊髓、血管、骨胳肌、肝、胰、角膜、视网膜等。
求一医学标书的样本
目前,移植排斥反应仍然是制约肝移植疗效的主要原因。虽然由于免疫抑制剂的临床应用,肝移植的1年的存活率大幅度提高,已超过了80%。但是终生服用免疫抑制剂不仅成为患者沉重的经济负担,而且造成机体的免疫功能低下,可能促进肝炎及肿瘤复发,诱发感染、肿瘤等疾病。因此,找寻诱导特异性移植耐受的新方法,是克服移植排斥反应的最佳途径。
特异性移植耐受是指在无需使用免疫抑制药物的情况下,受者的免疫系统对同种异体或异种供体抗原长期不发生免疫反应,而对其它抗原可发生正常免疫应答的状态。目前认为,诱导机体产生免疫耐受涉及免疫清除、免疫失能、免疫抑制和免疫忽视四类机制[1]。根据以上诱导免疫耐受的机制,学者们发展出许多诱导移植耐受的新方法[2]:(1)在胸腺内直接注射表达供体抗原的细胞,在胸腺内通过克隆清除诱导免疫耐受。(2)利用骨髓移植造成造血细胞嵌合体诱导耐受。(3)阻断T细胞活化的共刺激信号通路。(4)输注供体树突状细胞(Dentritic cell,DC)诱导耐受。(5)针对T细胞粘附和活化相关分子的单克隆抗体:抗T细胞及T细胞亚群的单抗;抗粘附分子或细胞因子的单抗。(6)其它特异性免疫抑制的方法:合成肽阻断TCR对同种异体抗原的识别;合成肽阻断趋化因子及其受体。以上方法均不同程度地诱导了对供体抗原的耐受,但它们存在如下不足:(1)成年人胸腺已经萎缩,无法在胸腺内直接注射表达供体抗原的细胞,故该方法适用范围大大受限。(2)供体骨髓移植能诱导部分耐受,但不易控制嵌合程度,移植物抗宿主病(graft versus host disease,GVHD)的发生率大大增加。(3)DC诱导的淋巴细胞失能状态可通过给予外源性IL-2而逆转;感染或其它因素引起机体强烈的免疫应答,产生大量的IL-2等细胞因子也可以通过旁效应解除失能的细胞克隆;失能状态的维持需要抗原的持续存在,抗原的去除也能逆转失能。(4)阻断协同刺激通路、应用针对T细胞粘附和活化相关分子的单克隆抗体、合成肽阻断TCR对同种异体抗原的识别、阻断趋化因子及其受体等方法能诱导出确切的免疫抑制,但是其作用范围是全身性的、非特异性的,且一旦中止阻断剂的供给,则移植耐受消失。总之, 目前诱导移植耐受的方法存在非特异性、容易逆转、实际操作困难等缺陷。
肝移植排斥反应启动时,首先表现为淋巴细胞对汇管区中央静脉周围的浸润,随着排斥反应的进展,淋巴细胞的损伤导致小叶间胆管上皮细胞、中央静脉内皮细胞的炎症,最后波及汇管区周围的肝实质细胞,造成广泛的肝脏炎性反应。因此肝移植排斥反应的过程是从汇管区启动,进而扩展至小叶间胆管上皮细胞、中央静脉内皮细胞、汇管区周围的肝实质细胞。移植排斥反应发生时,CTL细胞在活化后可以通过以下两条途径杀伤靶细胞:(1)穿孔素/颗粒酶途径。(2)Fas/FasL途径:在CTL细胞识别靶细胞后,细胞表面表达的高水平FasL与靶细胞表面的Fas相互识别,通过Fas触发靶细胞内部的凋亡程序,使靶细胞发生程序性死亡。体外实验证实两条途径相互独立。然而体内实验证实单一阻断Fas/FasL途径即可抑制CTL对靶细胞的杀伤,其原因可能与体内环境有关28.
诱骗受体3(Decoy receptor 3,DcR3)是一种新发现的可结合FasL的可溶性TNFR超家庭成员,RNA印迹表明DcR3 mRNA 表达于胎肺、脑、肝及成人脾、结肠和肺,特别是在肺癌和结肠癌细胞系的表达很高,也可由T细胞丝裂原激活的外周血单核细胞分泌。DcR3 分子质量为35kDa,肽链长300个氨基酸残基。DcR3 的配体是LIGHT、FasL、TL1A。其主要作用有:(1)与Fas竞争性结合FasL,阻断FasL所诱导的细胞凋亡,这一作用可以减弱CTL和NK细胞对靶细胞的杀伤[14]。(2)通过抑制LIGHT与HveA 或TR2之间的双向信号转导、TL1A至DcR3的单向信号转导来抑制T细胞激活。7 (3)抑制CXCL12/基质细胞来源的因子1α(SDF-1α) 、FasL对T细胞的趋化作用,从而减少CD4+和CD8+T细胞对肿瘤的浸润。25. 27.(4)通过调节DC分化和成熟从而抑制CD4+ T细胞增生。20.(5)抑制T细胞伪足形成,阻止它们形成不可分离的细胞簇从而调节T细胞与其它细胞如APC的相互作用。7
因此根据其作用机理,人们推测其可能有以下四方面的作用(1)肿瘤细胞逃避免疫监视。(2)抗炎作用。(3)致癌作用。(4)诱导移植耐受。目前的研究工作已经肯定DcR3基因对肿瘤细胞逃避免疫监视、抑制炎症反应的作用,但DcR3基因的高表达与细胞癌变无相关性,不是癌基因。Wu等证实DcR3减少了FasL、IFN-γ诱导的胰岛细胞凋亡及胰岛素释放,可防止同种异基因胰岛移植时的胰岛原发性无功能。2Zhang等于心脏移植术前一天开始连续7天静脉注射DcR3,小鼠心脏存活时间比对照组延长3.3天,提示DcR3可以减弱T细胞对同种异体抗原的反应。24我们利用腺相关病毒(adeno-associated virus, AAV)(AAV Helper-Free System, Stratagene 公司)作为DcR3基因的载体,将AAV病毒颗粒从门静脉、肝动脉、胆管注入冷保存时的供肝,成功实现了DcR3基因在供肝的表达,在没有使用免疫抑制剂的情况下,供肝正常存活了105天(目前仍然存活,继续观察中),而对照组仅存活了15天(见研究工作基础)。AAV Helper-Free System的特点有:病毒载体产生、效价滴定阶段均不需野生型腺病毒共感染,因此有极高的生物安全性、宿主的免疫反应极小;AAV可感染的细胞类型广泛,感染不依赖于活跃的细胞分裂;AAV病毒滴度高,常规可达107病毒颗粒/ml,经浓缩可达1012病毒颗粒/ml;AAV在允许复制的条件下可在染色体外复制,在不能复制的条件下可以5-10%的效率定点整合入宿主19号染色体的一个2-4kb的区域,因此AAV被证明有应用于基因长期表达的价值。我们目前的研究工作的特色有:(1)证明了腺相关病毒携带的DcR3基因可以诱导肝移植耐受。(2)采用AAV Helper-Free System克服了逆转录病毒载体转导效率低、随机整合入受者染色体中而致肿瘤的危险的缺点[1]以及腺病毒载体虽然有较高的转导率,但因不能在染色体外复制或整合入受者染色体中,目的基因只能一过性表达的缺点[2]。我们目前研究工作的缺陷有:(1)DcR3基因仅在肝脏血管内皮细胞、胆管上皮细胞表达,而急性排斥反应启动时CTL细胞首先浸润的是汇管区的中央静脉周围,因此它尚不能阻止急性排斥反应的启动,仅能阻止CTL细胞血管内皮细胞、胆管上皮细胞的攻击。(2)DcR3基因转染的血管内皮细胞、胆管上皮细胞是成熟的细胞。虽然携带DcR3基因的AAV可在染色体外复制或整合入宿主基因组而使DcR3基因存在长期表达的可能,但是成熟细胞存在新老交替,DcR3基因的表达随着细胞的死亡而消失。因此为了完善我们目前的研究工作,我们需要作以下的改进:(1)将DcR3基因的表达定位于汇管区中央静脉周围,抑制排斥反应的启动。如能进一步将DcR3基因表达于血管内皮细胞、胆管上皮细胞、肝细胞,则更能防止个别活化的CTL细胞对它们的攻击,从而形成抑制排斥反应的“双保险”。(2)实现DcR3基因的持续表达。
肝干细胞(Hepatic Stem Cell,HSC)是指具有自我更新能力和具有分化形成肝细胞与胆管细胞潜能的原始细胞。最近有人证实它尚可分化为血管内皮细胞(Gao Z, McAlister VC, Williams GM. Repopulation of liver endothelium by bone-marrow-derived cells. Lancet. 2001 Mar 24;357(9260):932-3.) [11]。肝干细胞的基本特征可概括为两点:①具有多向分化能力,可向肝细胞、胆管上皮细胞、肝脏血管内皮细胞分化。②具有自我更新与自我维持能力,对肝脏损伤或疾病产生反应并进行修复。其形态特点是细胞体积小、核大而胞质少、呈卵圆形、具有特殊的表面标志如AFP、肝细胞标志(白蛋白)、胆管上皮细胞标志(CK7、CK19)以及肝细胞、胆管上皮细胞共有的标志(CK8、CK18)。目前有人证实其尚有血管内皮细胞的标志。
该类细胞不仅在胚胎肝组织中存在,而且在成年肝组织中也存在。肝内的肝干细胞称为卵圆细胞(Hepatic Oval Cell,HOC)或小肝细胞。它们在正常情况下位于肝脏汇管区的Hering小管[D],当肝脏受到损伤(肝毒性药物、手术、创伤、缺血再灌注等)时,它们迅速增生分化,补充受损的肝细胞、胆管上皮细胞、肝脏血管内皮细胞分化,因而被称为肝干细胞池[A]。目前大量文献证实,肝脏损伤时,肝脏有三个水平的细胞修复:肝细胞、Hering 小管的双向干细胞、Hering小管周围的来自骨髓的肝干细胞。骨髓来源的干细胞可定居于Hering小管周围,在肝脏损伤时发挥修复作用[K]。Theise ND等通过三维观测得出Hering 小管、汇管区周围是肝干细胞存在的场所的结论[G]。Petersen 证实肝内存在骨髓来源的干细胞,Theise 大鼠2%,人4-40%。Alison0.5-2%(hsc8,78,79)。Lagasse 30%.认为Hering管可能是人肝干细胞起源分化及滞留场所(TheiseND,SaxenaR,PortmannBC,etal.Thecanalsofheringandhepaticstemcellsinhumans[J].Hepa-tology,1999,30:1425-1433.)
肝干细胞的肝外来源包括胰腺的上皮细胞、胰岛前体细胞、骨髓造血干细胞[3,4]。自1999年Petersen等发现肝卵圆细胞可来源于骨髓后,从骨髓细胞中鉴定肝干细胞成为近年研究的热点。目前研究证实从骨髓中分离纯化的造血干细胞的多个亚群在一定的微环境或细胞因子的诱导下可分化为肝干细胞[B]。目前,在骨髓中已发现多种细胞亚群具有分化为肝细胞的潜能,如KTLS细胞(c-kithighThylowLin-Sca-1+)[H]、β2-m-Thy-1+细胞[12]、CD44-CD45-HLA-c-kit-的多能成体前体细胞(multipotent adult progenitor cells, MAPC)[I]及C1qRp+细胞(Lin-CD45+CD38-CD34+/-)[J]等。这些细胞均涉及多个不同的表面标志,可能代表着骨髓干细胞的不同发育阶段或谱系中的不同分支。这些细胞因子肯定存在于细胞的微环境中,包括细胞外基质中参与粘附过程的信号分子以及参与正常细胞发育、分化、成熟的细胞因子[B] [E]。Petersen 等[L]、Theise等[M,N]和Alison等[O]的研究相继指出,骨髓干细胞或造血干细胞能够在鼠肝内转化成为肝卵圆细胞甚至成熟的肝细胞和胆管细胞,并同时证明这种现象也存在于人类体内。用高浓度的肝细胞生长因子(HGF)诱导体外培养的大鼠骨髓细胞,RT-PCR检测到白蛋白及AFP的表达,免疫细胞化学也证实了经诱导的细胞出现了AFP、白蛋白及CK8/18等肝前体细胞的特征性表达。应用磁株细胞筛选法分离人或大鼠骨髓细胞中的β2m-Thy-1+细胞,能够表达肝细胞的特征[P]。这些骨髓来源的肝干细胞(BDHSC)肝内移植后很快就整合入肝板,并且分化为成熟的肝细胞,而在体外培养的过程中加入胆汁化血清可促进它们向肝细胞方向分化。蔡云峰等用免疫磁珠法成功分离出骨髓干细胞的多个亚群,并证明大鼠骨髓内β2微球蛋白阴性(β2 m- ) 细胞经体外培养诱导后呈多角形细胞表现, 白蛋白、AFP、 CK8 / 1 8表达阳性,其他邓宏魁干细胞治愈尿毒症干细胞类型未见类似变化。提示该亚群骨髓干细胞有向肝干细胞分化的能力。我们参照他斑秃一般去医院什么科看们介绍的方法成功分离了1.5×105数量级的肝干细胞纯度为95%,培养7天后可达2×106数量级。经免疫组化染色证明其有肝细胞、胆管上皮细胞、血管内皮细胞的特异性标志,因此推测其可能分化为以上3种细胞(见研究工作基础)。这些研究结果都说明骨髓细胞中存在有能分化为肝细胞的干细胞群。
肝脏基因治疗的一大难题是被用作基因修饰的成熟肝细胞在体外不易扩增和传代,肝干细胞具有强大的增殖能力,即使经过基因修饰仍有可能传代,这为克服目前基因治疗中的主要问题开辟了新的途径。以肝干细胞作为载体具有一次性介入,永久性治疗的特点,且永生化的肝干细胞无致癌的危险性[F]。
基于以上研究成果,我们设想利用肝干细胞在肝脏汇管区中央静脉周围的靶向定植并在必要时分化补充受损或衰老的血管内皮细胞、胆管上皮细胞、肝细胞的生物学特性,以腺相关病毒为载体将DcR3基因转入从雄性近交系Wistar大鼠骨髓中分离纯化的肝干细胞,将雌性近交系Wistar大鼠肝脏植入雌性近交系Lewis大鼠,同时将转染DcR3基因的肝干细胞经门静脉注入移植后的肝脏。DcR3基因随着肝干细胞的定植主要在汇管区持续表达,必要时部分随着肝干细胞的进一步分化而表达在血管内皮细胞、胆管上皮细胞、肝细胞,从而在启动(主要)、攻击(次要)两个环节抑制排斥反应的发生。DcR3基因强大的免疫抑制作用被局限在肝脏之中,从而诱导出特异针对肝脏的移植耐受状态。
参考文献
1. Arnold B. Levels of peripheral T cell tolerance. Transplantation Immunology. 2002,10(2-3):109-114
2. Goddard S, Adams DH. New approaches to immunosuppression in liver transplantation. J astroenterol Hepatol.2002, 17(2):116-26
3. Petersen BE,Bowen WC,Patrene KD,et al.Bone mar row as a potential source of hepatic oval cells. Science.1999,284(5417):1168-70
4. Mitaka T.Hepatic stem cells:from bone marrow cells to hepatocytes.Biochem Biophys Res Commun.2001,281(l):l-5
5. Farber E.Similarities in the sequences of early histological changes Induced in the liver of the rat by ethionine,2-acetylaminofluorence,and 3-methyl-4-dimethyl aminoazobenzene.Cancer Res l955,16:142-8
6. Fujio K,Evans RP,Hu Z,et al.Expression of stem cell factor and its receptor,c-kit,during liver regeneration from putative stem cells in adult rat.Lab Invest.1994,70(4):511-6
7. Petersen BE,Goff JP,Greenberger JS,et al.Hepatic oval cells express the hematopoietic stem cell marker Thy-1 in the rat.Hepatology.1998,27(2):433-45
8. Baumann U, Crosby HA,Ramani P,et al.Expression of the stem cell factor receptor c-kit in normal and diseased pediatric liver: identification of a human hepatic progenitor cell? Hepatology.1999,30(l):112-7
9. Lemmer ER, Shepard EG,Blakolmer K,et al.Isolation from human fetal liver of cells co-expressing CD34 haematopoietic stem cell and CAM 5.2 pancytokeratin markers.J Hepatol.1998,29(3):450-4
10.Lagasse E,Connors H,AI- Dhalimy M,et al.Purified hematopoietic stem cells can differentiate into hepatocytes in vivo.Nat Med. 2000,6(11):1229-34
11.Gao Z, McAlister VC, Williams GM. Repopulation of liver endothelium by bone-marrow-derived cells. Lancet.2001,357(9260):932-933.
12.Avital I,Inderbitzin D,Aoki T,et al.Isolation,characterization,and transplantation of bone marrow derived hepatocyte stem cells.Biochem Biophys Res Commun.2001,288(l):156-64
13.Daly AK, Day CP, Donaldson PT. Polymorphisms in immunoregulatory genes: towards individualized immunosuppressive therapy? Am J Pharmacogenomics. 2002, 2(1): 13-23
14.Pitti RM, Marsters SA, Lawrence DA, etal. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature. 1998,396(6712): 699-703
A.Crosby HA, Gastroenterology,2001,120:534-544
B.姚 鹏,詹轶群,许望翔,等.细胞生长因子体外对大鼠肝干细胞的影响.中华肝脏病杂志,2003,11(1):33~36
C.赵春华(hsc3)
D.Alison MR.Liver 2001 21(6):376
E Suzuki A. Clonal identification Journal of cell boil,2002, 156(1):173
F Allain JE, Immortalization. Proc Natl Acad Sci,2002,99(6),3696
G Theise ND.The canals of .Hepatology ,1999,30(6):1425-1433
H Lagasse E, Connors H, Al-Dhalimy M, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med. 2000 Nov;6(11):1229-34.
I Schwartz RE, Reyes M, Koodie L, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest. 2002 May;109(10):1291-302.
J Danet GH, Luongo JL, Butler G, et al. C1qRp defines a new human stem cell population with hematopoietic and hepatic potential. Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10441-5. Epub 2002 Jul 24.
K Van der Kooy D, Weiss S. Why stem cells? Science. 2000 Feb 25;287(5457):1439-41.
L.PetersenBE,BowenWC,PatreneKD.etal.Bonemarrowasapotentialsourceofhepaticovalcells.Science,1999,284∶1168 1170.
M.TheiseND,BadveS,SaxenaR,etal.Derivationofhepatocytesfrobonemarrowcellsinmiceradiation inducedmyeloablation.Hepatology,2000,31∶235 240.
N.TheiseND,NimmakayaluM,GardnerR,etal.Liverfrombonmarrowinhumans.Hepatology,2000,32∶11 16.0 O.AlisonMR,PoulsomR,JefferyR.etal.Hepatocytefromnonhepatiadultstemcells.Nature,2000,406∶257.1
P.AvitalI,InderbitzinD,AokiT,etal.Isolation,characterizationandtransplantationofbonemarrowderivedhepatocytestemcellsBiochemBiophysResCommun,2001,288∶156 164.
2.项目的研究内容、研究目标,以及拟解决的关键问题。(此部分为重点阐述内容)
2.1 研究内容
2.1.1构建携带DcR3基因的腺相关病毒载体,并将其转染AAV293细胞,收集AAV病毒颗粒备用。
2.1.2从雄性近交系Wistar大鼠股骨、胫骨抽取骨髓,分离出肝干细胞,用上述腺相关病毒颗粒转染,并进行表达鉴定。
2.1.3将雌性近交系Wistar大鼠肝脏植入雌性近交系Lewis大鼠,同时将转染的雄性近交系Wistar大鼠的肝干细胞经门静脉注入肝脏。
2.1.4根据Y染色体及AAV病毒载体自带的绿色荧光蛋白(GFP)标志确定转基因肝干细胞在供肝中的定植、分布情况。
2.1.5检测转入肝干细胞的DcR3基因在供肝中的表达情况。
2.1.6观测肝移植术后移植排斥反应的发生情况。
2.2研究目标:本课题拟构建携带DcR3基因的腺相关病毒,将其转染雄性近交系Wistar大鼠骨髓来源的肝干细胞;将雌性近交系Wistar大鼠肝脏植入雌性近交系Lewis大鼠,同时将转染DcR3基因的肝干细胞经门静脉注入移植后的肝脏;使DcR3基因在供肝中长期表达,从而诱导特异针对肝脏的移植耐受状态。探讨:(1)转基因肝干细胞在供肝中的定植、分布情况。(2)转入肝干细胞的DcR3基因在供肝中的表达情况。(3)转基因肝干细胞在供肝中的分布及其基因表达与移植耐受的关系。
2.3拟解决的关键问题
2.3.1腺相关病毒转染肝干细胞的效率:干细胞的基因转染难度较大,是本课题的关键环节之一。本课题成员(删去)于2001年用腺病毒成功感染了神经干细胞,成功率约 80%~90%,且经传代培养 12代后仍具干细胞特性。腺相关病毒转染效率高于腺病毒,转染的细胞类型较腺病毒更广泛。因此本课题组有能力完成腺相关病毒对肝干细胞的转染。
2.3.2转基因肝干细胞在供肝汇管区中定植的数量:肝干细胞在汇管区的定植数量与肝脏受到的损伤程度有关。损伤越重,肝干细胞在汇管区的定植数量越多,反之亦然。肝移植时肝脏缺血再灌注对肝脏已是一种损伤,为了进一步提高肝干细胞在汇管区的定植数量,可在冷保存时切除大鼠肝脏的一叶,然后完成肝移植。
3.拟采取的研究方案及可行性分析。(包括有关方法、技术路线、实验手段、关键技术等说明)
3.1研究方案
3.1.1 DcR3基因的克隆,参照Pitti RM等介绍的方法进行。
3.1.2构建携带DcR3基因的腺相关病毒载体,并用其感染AAV-293细胞进行体外表达鉴定、收集AAV病毒颗粒备用。
3.1.3从雄性近交系Wistar大鼠股骨、胫骨抽取骨髓,分离肝干细胞并进行纯化、鉴定,参照Itzhak Avital等介绍的方法进行。
3.1.4腺相关病毒载体转染肝干细胞,采用直接感染方法。
3.1.5体外试验:表达DcR3基因的肝干细胞抑制FasL诱导淋巴细胞凋亡试验;表达DcR3基因的肝干细胞抑制FasL诱导的淋巴细胞趋化试验
3.1.6动物实验:大鼠肝移植采用袖套法,移植完成时将转染DcR3基因的肝干细胞经门静脉注入肝脏;分别于术后3天、7天、14天、21天、28天取血液及肝脏标本,采用常规生化法检测肝功能,Northern blot、Western blot检测DcR3基因在肝脏中的表达情况,免疫组化法检测受体CD4+、CD8+淋巴细胞在供肝中的浸润情况,TUNEL法检测供肝中细胞凋亡情况,常规石蜡切片HE染色观察移植排斥反应的发生情况。
3.2技术路线
3.3可行性分析
3.3.1理论上,骨髓来源的肝干细胞是肝脏汇管区卵圆细胞、嗜碱性小肝细胞的前体细胞。研究证明经门静脉注入的肝干细胞定植的肝脏汇管区的Hering小管,可分化为血管内皮细胞、胆管上皮细胞、肝细胞。汇管区是肝移植排斥反应时CTL细胞首先浸润的区域,血管内皮细胞、胆管上皮细胞、肝细胞是CTL细胞攻击的靶细胞。因此肝干细胞将转染的免疫抑制基因带入肝脏并汇管区及血管内皮细胞、胆管上皮细胞、肝细胞中持续表达,从而诱导特异针对肝脏的移植耐受状态在理论上是可行的。
3.3.2本研究所涉及的技术均为成熟的免疫学技术;本研究所拥有本研究所需的设备和条件。
4.本项目的特色与创新之处。
本研究利用了肝干细胞在肝脏定植、分化的靶向性,将其作为免疫抑制分子的载体,使非特异性的免疫抑制分子的作用局限于肝脏之中,克服了免疫抑制分子作用范围过大的缺点,从而诱导特异针对肝脏的移植耐受状态。
5.年度研究计划及预期研究结果。(包括拟组织的重要学术交流活动、国际合作与交流计划等)
年度研究计划
2005.01-2005.09 DcR3基因的克隆,构建携带DcR3基因的腺相关病毒载体备用。
2005.10-2006.06 分离、纯化、鉴定雄性近交系大鼠骨髓来源的肝干细胞,并用腺相关病毒进行转染;DcR3基因的体外表达鉴定;所转染的DcR3基因的体外功能实验。
2006.07-2007.06 完成肝移植的动物模型,将转染后的肝干细胞经门静脉注入肝脏。按期取肝脏标本,根据Y染色体标志染色及GFP,确定转基因肝干细胞在供肝中的定植、分布情况;检测转入肝干细胞的基因在肝脏中的表达情况;移植排斥反应的发生情况。
2007.07-2007.12 补充实验遗漏,整理实验资料,统计处理实验数据,撰写论文。
预期研究结果
1.证明转染DcR3基因的肝干细胞能在供肝汇管区及部分血管内皮细胞、胆管上皮细胞、肝细胞中持续表达,同时诱导出长期的肝移植免疫耐受。
2.在国外学术期刊上发表论文2-3篇,在国内核心期刊发表论文6-8篇,并在国内学术会议交流。
(二)研究基础与工作条件
1.工作基础(与本项目相关的研究工作积累和已取得的研究工作成绩)
2月底至3月初出结果。
2.工作条件(包括已具备的实验条件,沿缺少的实验条件和拟解决的途径,包括利用国家重点实验室和部门开放实验室的计划与落实情况。)
删去
3.申请人简历(包括申请者和项目组主要成员的学历和研究工作简历,近期已发表与本项目有关的主要论著目录和获得学术奖励情况及在本项目中承担的任务。)
删去
(三)经费申请说明(要求按照《国家自然科学基金经费管理办法》认真填写,购置5万元以上固定资产及设备等,须逐项说明与项目研究的直接相关性及必要性。)
(四)其他附件清单(附件材料复印后随纸质《申请书》一并上交)(随纸质申请书一同报送的附件清单,如:具有中级技术职称申请者的推荐信或在职研究生申请项目的导师推荐信等。)
干细胞可以治疗肝炎吗?
上世纪50年代末被发现,因为形态而被称为卵圆细胞,后来知道它是肝内具有分化能力的细胞,所以科学家就赋予这种细胞以新的概念,叫肝干细胞。在正常的情况下,肝干细胞处于休眠状态,不增生、不分化,但当肝细胞坏死或中毒时,它会“感觉”到,会“苏醒”过来,在适宜的环境中开始活跃地增值及分化,又以其本能的趋向性而朝患处集结,以弥补减员的肝细胞。肝干细胞从来源上分为两类:一类是由肝卵圆细胞、胚胎肝细胞、成人肝细胞和胆管细胞分化来的肝干细胞,因其与肝脏有关,故称为肝源性肝干细胞;另一类是由骨髓干细胞、胚胎干细胞和胰腺上皮干细胞分化而来的肝干细胞,这一类肝干细胞与肝脏没什么瓜葛,故称为非肝源性肝干细胞。肝干细胞具有极其诱人的临床应用价值。首先,体外培养肝干细胞为细胞移植和生物人工肝提供了一种新的细胞来源,其强大的增殖能力及多源性的生物学特点为解决用于移植肝细胞的增殖困难及供体缺乏提供了新思路;其次,利用其可向肝细胞转化的潜力启动肝再生,以治疗各种原因所致的急性、亚急性肝坏死,即临床肝衰竭;第三,利用其进行体外基因治疗,如通过体外基因修饰肝干细胞,再移植给有相应基因缺陷的肝脏,使其转变成正常功能的肝细胞,可以用于治疗一些代谢性疾病或病毒性疾病;第四,利用其与肝癌的研究成果,可针对肝干细胞癌变或致癌作用来研制相应的抑制或阻断制剂,这为肝癌的防治又开辟了一条新途径;另外,还可以用于评估新药的毒理作用和药代动力学以及利用其潜在的造血功能来治疗各种血液病。干细胞移植经肝动脉或门静脉注入患者体内,这两条血管直通肝脏,为其提供血液;或通过介入管道,直接将干细胞种于肝组织;也可以将干细胞接种于腹腔内和脾脏中。移植后的干细胞很快落户于肝内,可强有力地分化为肝干细胞,再由其分化为肝细胞;或直接分化为肝细胞和胆管细胞;最后构成新生的肝组织,以替代病态的肝组织,于是肝功能恢复,病情改善。
干细胞脂肪移植的原理是什么
髓干细胞自身具备向成体细胞分化的潜能,它可向神经细胞、心肌细胞、血管内皮细胞、软骨细胞以及肝实质细胞方向分化。在体外诱导剂的作用下,骨髓干细胞可以向肝实质细胞转化。在体内,肝脏微环境诱导骨髓干细胞向肝实质细胞转化也得到研究的证实。
1999年Petersen等发现肝干细胞和一些肝细胞可能部分来源于骨髓或与骨髓相关。他们通过以下实验检测了这一思路:(1)将一雄性大鼠的骨髓移植到致死量照射的同源雌性大鼠,并用DNA探针检测受鼠肝内有无雄性来源的Y染色体。(2)用表达组织相容性抗原Ⅱ类抗原L21-6的Lewis大鼠作为受体,不表达L21-6的Brown-Norway大鼠作为供体进行全肝移植,以确定肝外来源的L21-6阳性细胞是否能够定位于移植的肝脏。他们发现,在骨髓移植后13天,在肝内检测到了Y染色体信号,在这一时间卵圆细胞开始分化为肝细胞。如果分化为肝细胞的卵圆细胞来自肝脏,那么将不会有肝细胞表达阳性的Y染色体信号,但结果显示,一些肝细胞表达明显的Y染色体信号,表明它们来源于骨髓供体细胞。同样,在全肝移植后发现,在移植的肝脏内发现有明显的L21-6阳性细胞,表明一些卵圆细胞来源于肝外,而那些来源于肝内的卵圆细胞则L21-6阴性,实验表明,骨髓中含有能够分化为肝细胞潜能的干细胞,一些卵圆细胞有可能来源于骨髓。
骨髓中的肝前细胞可以用于肝衰竭的移植治疗而不必考虑组织相容性抗原的配型问题,因为患者自身的骨髓细胞就可以用于移植。骨髓细胞具有以下优点:(1)可以制备富含干细胞的骨髓细胞。(2)通过转导促进基因能够增加骨髓来源的肝细胞。(3)可用骨髓来源肝细胞用于生物人工肝;此外HGF也可以通过促进包括骨髓干细胞的肝前细胞分化用于肝硬化治疗。自体骨髓干细胞移植治疗肝损伤将为肝脏疾病的治疗提供新的途径。
相关文章
发表评论
评论列表
- 这篇文章还没有收到评论,赶紧来抢沙发吧~