组织免疫细胞流式检测(流式细胞术检测免疫细胞)
本文目录一览:
- 1、实验技能方面
- 2、流式细胞术的作用原理
- 3、流式细胞仪分析技术及应用
- 4、流式细胞术原理
- 5、质谱流式---质谱技术和流式技术的完美结合
- 6、什么是皮肤护理脸部流式细胞术(FCM)检测
实验技能方面
典型的PCR包括 高温变性、低温退火、中温延伸 三个步骤,通过将这一套过程不断循环,使DNA得以成百万倍的扩增。
因此 所谓的PCR仪,其实就是一套自动温控系统
我们可以看到这里复制之后实际上有一条链是新合成的,另一条则是原先就存在的,因此说这叫半保留复制。
1.模板(1 ng/μL)
模板DNA可以从各种生物组织中得到,通常浓度为1 ng/μL。浓度不是越高越好,浓度太高会导致大量的非特异性结合。
2.引物(10 μmol/L)
引物浓度通常是10 μmol/L。
引物浓度太低,产量较低;
引物浓度太高,引起错配、非特异性以及引物二聚体。
3.Taq酶(5 U/μL)
U是酶活力单位,定义为:25℃下(其它为最适条件),1分钟内能转化1 μmol底物的酶含量,或是转化底物中1 μmol有关基团的酶含量。
4.dNTP(2.5 mmol/L)
dNTP可与Mg2+结合,使游离的Mg2+浓度下降,从而影响DNA聚合酶的活性。
5.Buffer(含Mg2+)
Mg2+是DNA聚合酶的激活剂。
Mg2+浓度过低会使DNA聚合酶活性降低,PCR产量下降。
Mg2+浓度过高会使特异性降低。
对反应产物进行琼脂糖凝胶电泳检测
Real-time qPCR是指在PCR反应中加入荧光基团,通过连续监测荧光信号出现的先后顺序以及信号强弱的变化,即时分析目的基因的初始量,该技术的发明实现了PCR从定性到定量的飞跃。
保存于进口EP管,300u 一个
封装前充分震荡保存液
要分别准备fluA和fluB的体系
流式细胞仪,样品细胞和荧光染料是流式细胞术的三大要素
流式细胞术检测的对象是呈独立状态悬浮于液体中的细胞,不能直接检测组织块中的细胞,必须先用各种方法将脏器或者组织制备成为单细胞悬液,然后标记上荧光素偶联抗体,才能够被流式细胞仪检测。
流式细胞术应用领域极其广泛,特别是免疫学,临床医学[3-6],现在流式细胞术还能够辅助多种疾病的这段,尤其是白血病的诊断和分型。
流式细胞仪是对细胞进行自动分析和分选的装置。它可以快速测量、存贮、显示悬浮在液体中的分散细胞的一系列重要的生物物理、生物化学方面的特征参量,并可以根据预选的参量范围把指定的细胞亚群从中分选出来。
各种型号的流式细胞仪虽然差别较大,但是基本结构是相同的,一般分为:液流系统,光路系统,检测系统和分选系统[7]。分析型流式细胞仪主要由前面的三个系统组成,分选型流式细胞仪比分析型细胞仪多了一个分选系统。
液流系统由两套紧密联系而又相互独立的液流组成,即鞘液流和样品流。鞘液流从鞘液筒开始,通过管道进入喷嘴,经喷嘴的小孔形成稳定的可见的液流。鞘液最基本的特征就是等渗,保证处于鞘液中的细胞不会因为低渗或者高渗而死亡。样品流是上样分析的含有样品细胞的液体流,样品流开始于样品管,经过特定的专门管道进入喷嘴,然后与鞘液一起从喷嘴口射出形成可见液流,最后经过废液孔流入废液桶。上样分析时,两种液体虽然互相接触,却没有互相混合在一起,而是形成层流,样品流在中间,鞘液流在外围,而且两者所受的压力也不一样。操作者可以通过调节样品正压和鞘液正压之差来控制上样的速度,样品的正压和鞘液正压之差越大,可见液流中样品流的直径就越大。上样分析的速度就越大。
光路系统开始于激光器,激光器是流式细胞仪的必需组成元件之一,不同的激光器发出的激光照射到细胞之后产生的光信号会经过不同的光路系统被不同的通道接收,流式细胞仪需要通过光路系统,根据不同的接收通道接收,然后通过信号的强弱间接反映细胞的物理化学特性。
光路系统是由一系列的透镜,滤光片和小孔组成,根据波长的不同分离各种光信号,其中滤光片尤其重要。根据功能的不同,可以分为长通滤片,短通滤片和带通滤片三种。长通滤片功能为:波长大于特定波长的光可以通过,波长小于该波长的光被反射。短通滤片的波长小于特定波长的光可以通过,波长大于该波长的光被反射。带通滤片的功能为:波长在某特定范围的光可以通过,波长在该范围以外的光被反射。
利用不同的类型的滤光片,将混合光信号分为六个不同的光信号,进入不同的六个通道,分别为SSC通道,FIFC通道,PE通道,PE-TxRed通道,PE-Cy5通道和PE-Cy7通道。
流式细胞仪的检测分析系统就是以通道为单位将细胞的各个通道的光信号汇总分析,最后得出的样品群体中细胞的物理化学特征。这里必须提到光电倍增管的概念。通过滤光片根据波长的不同分离的光信号最后进入各自呢通道,也就是各自的光电倍增管。光电倍增管的功能主要为:将光信号转变为电信号,同时通过一定的比例将信号放大。
流式细胞仪的通道根据光信号性质的不同可以分为散射光和荧光通道。散射光通道是接收散射光的通道,即前向角散射光(FSC)通道和侧向角散射光(SSC)通道。荧光通道的命名方式是该通道主要接收哪个荧光素的荧光,就根据该荧光素的名称来命名。例如FITC通道,接收488nm激光激发后的荧光信号,波长510-550nm的荧光信号,所以,当细胞被超级FITC偶联抗体时,该通道所代表的信号就是FITC的信号,该通道接收的荧光信号越强,表示细胞上结合的FITC荧光素越多,为了方便,该通道被命名为FITC通道。此外,以主要荧光素命名的通道并不是只接收这一种荧光素被激发的荧光信号,其他外泌体分析鉴定公司的荧光素被激发后的荧光信号也可以被通道所接收和分析,如FITC通道,它也可以接收GFP和CFSE被488nm激光激发以后的荧光信号。
散射光信号和荧光信号经过光电倍增转为电子信号后,是以电子脉冲和电子波的形式被计算机系统接收和分析的。电子波的比较大小主要有三种方式,即电子波的长度,宽度和面积。这三个参数都可以反映光信号的大小,但是参数面积代表电子波的大小要比长度和宽度更加准确。
分选式流式细胞仪比分析型流式细胞仪多一个系统,流式分选系统。分选型流式细胞仪能够从样品细胞中分离出目标细胞,回收后可以再培养,即,分选之后的细胞是具有活性的,无菌条件下的细胞。
检测淋巴细胞亚群,监测细胞免疫状态(淋巴细胞是机体免疫系统功能重要的大细胞群,在免疫应答过程中,末梢血淋巴细胞发育分化成为功能不同的亚群。当亚群的数量和功能发生异常时,就能导致机体免疫紊乱并产生病理变化[10-11]。FCM可以同时检测一种或几种淋巴细胞表面抗原,将不同的淋巴细胞亚群区分开来,并计算出它们相互间的比例,通过对病人淋巴细胞各亚群数量的测定来监控病人的免疫状态,并指导治疗)。
细胞周期分析:在细胞周期(G0,G1,S,G2,M)的各个时期,DNA的含量随各时相呈现出周期性的变化[12]。通过核酸染料标记DNA,并由流式细胞仪进行分析,可以得到细胞各个时期的分布状态,计算出G0/G1%,S%及G2/M%。了解细胞的周期分布及细胞的增殖活性。也可利用细胞周期蛋白(CYCLIN)、Ki67、核增殖抗原(PCNA)等,对细胞周期进行精确的分期:G0、G1、S、G2、M.应用于:肿瘤的早期诊断、肿瘤的良恶性判断、观察细胞的增殖状态及周期分布和疗效监测。
检测细胞特异性标记物:FCM不但可以定性分析标记物,而且可以进行定量。用标记已知数量的荧光素分子的标准微球作参照,可以计算出每个细胞抗原定簇的个数。
流式细胞术的作用原理
流式细胞术(Flow Cytometry, FCM)是一种在功能水平上对单细胞或其他生物粒子进行定量分析和分选的检测手段,它可以高速分析上万个细胞,并能同时从一个细胞中测得多个参数,与传统的荧光镜检查相比,具有速度快、精度高、准确性好等优点。
将待测细胞染色后制成单细胞悬液。用一定压力将待测样品压入流动室,不含细胞的磷流式细胞术酸缓冲液在高压下从鞘液管喷出,鞘液管入口方向与待测样品流成一定角度,这样,鞘液就能够包绕着样品高速流动,组成一个圆形的流束,待测细胞在鞘液的包被下单行排列,依次通过检测区域。
流式细胞仪通常以激光作为发光源。经过聚焦整形后的光束,垂直照射在样品流上,被荧光染色的细胞在激光束的照射下,产生散射光和激发荧光。这两种信号同时被前向光电二极管和90°方向的光电倍增管接收。光散射信号在前向小角度进行检测,这种信号基本上反映了细胞体积的大小;荧光信号的接受方向与激光束垂直,经过一系列双色性反射镜和带通滤光片的分离,形成多个不同波长的荧光信号。
这些荧光信号的强度代表了所测细胞膜表面抗原的强度或其核内物质的浓度,经光电倍增管接收后可转换为电信号,再通过模/数转换器,将连续的电信号转换为可被计算机识别的数字信号。计算机把所测量到的各种信号进行计算机处理,将分析结果显示在计算机屏幕上,也可以打印出来,还可以数据文件的形式存储在硬盘上以备日后的查询或进一步分析。
检测数据的显示视测量参数的不同由多种形式可供选择。单参数数据以直方图的形式表达,其X轴为测量强度,Y轴为细胞数目。一般来说,流式细胞仪坐标轴的分辨率有512或1024通道数,这视其模数转换器的分辨率而定。对于双参数或多参数数据,既可以单独显示每个参数的直方图,也可以选择二维的三点图、等高线图、灰度图或三维立体视图。
细胞的分选是通过分离含有单细胞的液滴而实现的。在流动室的喷口上配有一个超高频电晶体,充电后振动,使喷出的液流断裂为均匀的液滴,待测定细胞就分散在这些液滴之中。将这些液滴充以正负不同的电荷,当液滴流经带有几千伏特的偏转板时,在高压电场的作用下偏转,落入各自的收集容器中,不予充电的液滴落入中间的废液容器,从而实现细胞的分离。
流式细胞仪分析技术及应用
在2019年的三月份我正式开始做单细胞相关研究工作,有趣的同时也是朋友我们经常误会的是:你为什么产后严重掉发是不是用流式细胞术?而我在得知自己要做这单细胞(single cell )的研究时,在Google搜关键词(single cell ),居然有不少是介绍流式细胞术的。流式细胞术应用到高通量测序领域就变成了微流控技术。可见,把生命科学的视界拉倒单细胞水平的比高通量测序更早的是流式细胞术。
那么在单细胞测序技术出现之前,人们在研究单细胞的时候都是怎么做的呢,都有哪些分析点呢?单细胞测序技术给单细胞研究带来了哪些新的视角?这一切的答案都要求我们对流式细胞术有一个基本的了解。
流式细胞术(flow cytometry, FCM)是以流式细胞仪为检测手段的一项能快速、精确的对单个细胞理化特性进行多参数定量分析和分选的新技术。
流式细胞仪是测量染色细胞标记物荧光强度的细胞分析仪,是在单个细胞分析和分选基础上发展起来的对细胞的物理或化学性质(如大小、内部结构、DNA、RNA、蛋白质、抗原等)进行快速测量并可分类收集的高技术。
采用激光作为激发光源,保证其具有更好的单色性与激发效率;利用荧光染料与单克隆抗体技术结合的标记技术,保证检测的灵敏度和特异性;用计算机系统对流动的单细胞悬液中单个细胞的多个参数信号进行数据处理分析,保证了检测速度与统计分析精确性。
(1) 液流系统
(2) 光学系统
(3) 数据处理系统
激光光源:气冷式氩离子激光器
分色反光镜:反射长/短波长,通过短/长波长
光束成形器:两十字交叉放置的透镜
透镜组:形成平行光,除去室内光
滤片:长通、短通、带通
光电倍增管:FS, SS(散射光), FL1, FL2, FL3, FL4(荧光)
测得的FS与SS信号通过计算机处理,可得到FS-SS图,由此可仅用散射光信号对未染色的活细胞进行分析或分选。此为血细胞分类的基本原理,但不能分析表面分子。
荧光信号由被检细胞上标记的特异性荧光染料受激发后产生,发射的荧光波长与激发光波长不同。
每种荧光染料会产生特定波长的荧光和颜色,通过波长选择通透性滤片,可将不同波长的散射光和荧光信号区分开,送入不同的光电倍增管。
选择不同的单抗及染料就可同时测定一个细胞上的多个不同特征。
线性放大器和对数放大器
通过流式细胞仪进行细胞分选主要是在对具有某种特征的细胞需进一步培养和研究时进行的。
FS:反映颗粒的大小
SS:反映颗粒的内部结构复杂程度
FL:反映颗粒被染上的荧光数量多少
单参数直方图
双参数直方图:点图
二维等高图
假三维等高图
三参数直方图
多参数分析
双参数直方图:纵轴和横轴分别代表被测量细胞的两个测量参数,根据这两个参数就可以确定细胞在图上的表达位置。
双参数信号通常采用对数信号,最常用的是点密图,在图中,每个点代表一个细胞,点图利用颗粒密度反映同样散射光或荧光强度的颗粒数量的多少。
由类似地图上的等高线组成,其本质也是双参数直方图。
等高图上每一条连续曲线上具有相同的细胞相对或绝对数,即“等高”。
曲线层次越高(越里面的线) 所代表的细胞数愈多。
等高线越密集则表示细胞数变化率越大。
流式细胞仪(FCM)是集单克隆抗体、荧光化学、激光、计算机等高技术发展起来的一种先进仪器,已广泛应用于免疫学、生物化学、生物学、肿瘤学以及血液学等方面的研究和临床常规工作。
①细胞生物学 :细胞凋亡研究;定量分析细胞周期并分选不同细胞周期时相的细胞;分析生物大分子如DNA、RNA、抗原、癌基因表达产物等物质与细胞增殖周期的关系,进行染色体核型分析,并可纯化X或Y染色体。 [详细]
②肿瘤学 :DNA倍体含量测定是鉴别良、恶性肿瘤的特异指标。近年来已应用DNA倍体测定技术,对白血病、淋巴瘤及肺癌、膀胱癌、前列腺癌等多种实体瘤细胞进行探测。用单克降抗体技术清除血液中的肿瘤细胞。 [详细]
③免疫学 :研究细胞周期或DNA倍体与细胞表面受体及抗原表达的关系;进行免疫活性细胞的分型与纯化;分析淋巴细胞亚群与疾病的关系;免疫缺陷病如艾滋病的诊断;器官移植后的免疫学监测等。 [详细]
④血液学 :血液细胞的分类、分型,造血细胞分化的研究,血细胞中各种酶的定量分析,如过氧化物酶、非特异性酯酶等;用NBT及DNA双染色法可研究白血病细胞分化成熟与细胞增殖周期变化的关系,检测母体血液中Rh(+)或抗D抗原阳性细胞,以了解胎儿是否可能因Rh血型不合而发生严重溶血;检测血液中循环免疫复合物可以诊断自身免疫性疾病,如红斑狼疮等。 [详细]
⑤药物学 :检测药物在细胞中的分布,研究药的作用机制,亦可用于筛选新药,如化疗药物对肿瘤的凋亡机制,可通过测DNA凋亡峰,Bcl-2凋亡调节蛋白等。 [详细]
细胞凋亡研究 :细胞凋亡是细胞在基因控制下的有序死亡,在疾病发生、发展中有重要作用,因而研究细胞凋亡有重要意义。细胞凋亡检测方法很多,应用流式细胞仪技术可根据细胞在凋亡过程中发生一系列形态、生化变化从多个角度对细胞凋亡进行定性和定量的测定。 [详细]
** 细胞分选**:流式细胞仪能够分选某一亚群细胞,分选纯度>95%。目前细胞分选主要用于研究,临床应用较少。利用流式细胞仪分选免疫担当细胞进行细胞免疫学研究也是目前的热门课题。流式细胞仪能够分选出你想得到的任何一亚群细胞,只要你想得到的某一亚群细胞有合适的单克隆抗体标记。 [详细]
** 细胞因子的检测**:随着多标记及胞内细胞因子标记流式细胞技术的出现,使对细胞内细胞因子的研究推向了一个新的阶段。本文主要对胞内细胞因子流式细胞技术作介绍。 [详细]
** 血液学应用**:本文向您介绍流式细胞仪在血液研究领域的应用,包括DNA倍体分析及细胞周期分析,淋巴细胞亚群测定,白血病免疫分型,淋巴瘤免疫分型,红细胞疾病诊断,血小板功能分析和血小板病诊断,微小残留白血病检测,白细胞吞噬功能测定,NK和LAK细胞活性测定,造血干/祖细胞测定等。 [详细]
流式细胞术原理
FSC通道
FSC,即前向角散射,它的值代表细胞的 大小 。所以可以利用细胞的FSC值初步比较细胞的大小,利用FSC值对细胞进行分群和分类。
SSC通道
SSC,即侧向角散射,它的值代表 细胞的颗粒度 (granularity)。细胞越不规则,细胞表面的突起越多,细胞内能够引起激光散射的细胞器或者颗粒性物质越多,其SSC值就越大。所以可以利用细胞的SSC值初步比较细胞的颗粒度,利用SSC值对细胞进行分群和分类。
检测样品中是否含有细胞表达某一CD分子——标记荧光素偶联的该CD分子的抗体——表达有该CD分子的细胞就会结合荧光素偶联抗的该CD分子的抗体——荧光素被相应的激光激发后产生荧光——荧光通道值反映接收到的荧光信号的强弱,——反映细胞上结合的荧光素的量,反映细胞上表达该CD分子的量——间接反映细胞表达某CD分子这一化学特征
不同细胞群的FSC值和SSC值最多相差几倍,而荧光信号强弱之间一般相差很大,阴性细胞与阳性细胞之间、强阳性与弱阳性之间有时可以相差几十倍、几百倍,甚至几千倍,呈指数关系。 流式图数轴上FSC值和SsC值以“一般数序形式”表示,而荧光通道值常以“对数形式”(logarithmic scale)表示
流式直方图的x轴表示一个通道的值,y轴表示细胞数量。
流式直方图只能表示一个通道的信息,而流式散点图能够同时表示两个通道的信息,可以非常直观地发现细胞群体中这两个通道值的相互高低关系,从而更易于细胞分群、分类,以及确定比例关系等。
流式散点图也是采取坐标轴的方式,x轴表示一个通道的值,y轴表示另一个通道的值,图中每一点代表一个细胞,该点所对应的横坐标值就是该点所代表细胞的x轴通道的值,所对应的纵坐标值就是该点所代表细胞的y轴通道的值。
环线聚集越多的地方表示此区域细胞密度变化越快,细胞最稀疏的地方还是用散点表示,环线的中央区域代表细胞聚集的中心
流式等高线图比流式散点图更能直观地体现细胞的分群。
质谱流式---质谱技术和流式技术的完美结合
CyTOF 质谱流式细胞仪利用重金属同位素作为抗体标签,利用质谱技术对细胞蛋白进行定量检测。
该技术的应用一方面使流式检测通道数量大幅提高到了上百个,提升了从单个样品获得的信息量;另一方面避免了通道间信号的干扰,大大简化了实验设计,提升了数据的可靠性。
通道的增加意味着可以对细胞亚型进行更精准的分群,也意味着可以对细胞内信号通路进行更加全面的分析;单次实验可捕获百万级别的单细胞,避免遗漏小亚群。广度和深度的综合,
使得质谱流式成为单细胞水平蛋白组学研究不可或缺的工具。
[图片上传失败...(image-f26ba1-1648989039751)]
Helios 质谱流式系统对信号分辨率极高,可同时检测上百种不同的标签。质谱流式可以同时获得单细胞表面 Marker、胞内信号通路、转录因子、细胞因子、细胞周期等等各方面的信 息,在造血、免疫、干细胞、癌症以及药物筛选等多个领域的研究中有着广泛的应用。
[图片上传失败...(image-36825b-1648989039749)]
从抗体 Panel 设计到数据分析,每一步都经过科学、缜密的设计,以保障高质量研究成果。
[图片上传失败...(image-25f099-1648989039751)]
常见问题
Q
(2)检测系统的不同:前者使用激光器和光电倍增管作为检测手段,而后者使用 ICP 质谱技术作为检测手段。
Q
(2)通道间无干扰,无需计算补偿。
(3)采用独特的金属标签抗体。由于细胞本身不含这些作为标签的金属元素,没有传统流式的“自发荧光”,因此信号背景极低。
(4)多样化的数据处理方式,实现对样品的深入分析。
Q
(1)PBMC 细胞分离。推荐用肝素或者柠檬酸盐作为抗凝剂抽提全血,并在4小时内使用Ficoll 或者 Percol 密度梯度离心法分离出 PBMC。注意需要尽量去除红细胞;
(2)顺铂染色。顺铂可用于区分死活细胞,推荐加入1 uL 终浓度为5 uM 的顺铂,37℃孵育5分钟后加入2~5倍体积的 Cell Staining Buffer,中止反应。其后以300 g的转速离心5分钟, 弃上清后使用 Cell Staining Buffer 或细胞培养基重悬细胞;
(3)细胞刺激(可选)。将细胞转入培养箱培养15~30 min,随后使用相应刺激物进行分组刺激。刺激后的细胞转至离心管,离心后使用 Cell Staining Buffer 稀释至1 mL; 注:此步根据具体需要,短时间的信号通路刺激可以按上述步骤进行;如果做数小时的胞内 Cytokine,该步骤应该放在染顺铂之前。
(4)细胞固定。使用2× 的 fixation buffer(含3.2% PFA 的 PBS)进行固定;
(5)将固定后的样品保存在-80℃。
Targeting YAP-Dependent MDSC Infiltration Impairs Tumor Progression
期刊: Cancer Discovery
影响因子:19.45
发表单位:德克萨斯大学安德森癌症中心
发表时间: 2016年1月
研究背景
对前列腺癌细胞和肿瘤浸润免疫细胞之间信号传导机制的研究可能会开启新的治疗方法。
三、研究结果
1. 通过质谱流式细胞分析技术对17个表面 Marker 进行分析,解析了肿瘤组织中免疫细胞的亚群组成及其随时间的变化趋势。
[图片上传失败...(image-8c2f83-1648989073980)]
图1 组间平均 beta 值差异火山图
2. 红色代表的是骨髓来源的抑制性细胞(MDSC),可以看到其比例随时间明显增大,提示 MDSC 在肿瘤发生过程中具有重要的作用。
[图片上传失败...(image-8fb065-1648989073979)]
研究结论
本研究通过质谱流式对 PTEN 和 Smad4 缺失的前列腺癌模型进行研究,发现肿瘤浸润免疫细胞主要由 MDSC 组成,且其比例随着癌症的发展不断增高。如果将此部分细胞剔除,病程会 受到抑制。
阅读原文:
首先将表型类似的细胞聚成小群,然后依照各小群的表型相似度进行聚类分析,最后得到一个树形图。
每个节点都是由一群表型相似的细胞构成的,节点相对位置不同也体现了其表型的差异。
[图片上传失败...(image-b5aa76-1648989132219)]
尽可能保持信息不丢失的基础上,将多维信息压缩到二维,这样就可以用二维散点图来展示高维数据的结构。
可以看出,在 viSNE 图谱中,几个主要免疫亚群各自聚群。
[图片上传失败...(image-ed9157-1648989132218)]
Wanderlust 会根据每个细胞排列的位置赋予细胞一个 Wanderlust 值,其大小就反映了分化程度。
以 B 细胞为例,0代表起点(造血干细胞),1代表终点(Immature Naive B),该数值越小说明细胞越原始。
有了这个工具,我们可以观察 B 细胞分化过程中任意一个蛋白的表达变化,这些信息可以帮助我们找到分化过程中一些重要的事件。
[图片上传失败...(image-9cd8b0-1648989132218)]
将不同时间点的质谱流式数据做降维分析,得到的图谱反映了细胞表型随时间的变化。
[图片上传失败...(image-c05d5c-1648989132218)]
临床样本具有很大的异质性,比较有规律性、代表性的差别往往只存在于少数亚群中。Citrus 可分析识别出这些特征性亚群。
[图片上传失败...(image-564aec-1648989132218)]
聚类热图可以简单地聚合大量数据,直观地展现数据的频率高低。
[图片上传失败...(image-b17819-1648989132218)]
用来呈现数据点的分布,表现两个元素的相关性。
[图片上传失败...(image-9d13df-1648989132218)]
原文: CyTOF -result
什么是流式细胞术(FCM)检测
1.流式细胞术(flow cytometry,FCM)是一种可以对细胞或亚细胞结构进行快速测量的新型分析技术和分选技术。2.特点1.测量速度快;2.可进行多参数测量;3.是一门综合性的高科技方法( FCM综合了光学,电子学,流体力学,细胞化学,免疫学,激光和计算机等多门学科和技术);4.既是细胞分析技术,又是精确的分选技术。
相关文章
发表评论
评论列表
- 这篇文章还没有收到评论,赶紧来抢沙发吧~