莱利赛百科

您现在的位置是:首页 > 干细胞知识 > 正文

干细胞知识

胚胎干细胞多肽(胚胎干细胞多肽冻干粉多少钱西安)

max2023-02-15干细胞知识51

本文目录一览:

干细胞的护肤产品真的有效果吗?

干细胞就是骨雕局部抗衰种子细胞,也叫起源细胞。它是体外最佳保存细胞方式在生命成长和发育的过程中起“主干”作用的细胞。也就是说,有了干细胞就可以使它在一定的条件下长成神经、皮肤,或者心肌等组织器官。同时,它在形成组织器官的同时还能保存另一份种子细胞。干细胞分为胚胎干细胞和成体干细胞,胚胎干细胞具有全能性,可自我天津干细胞美容医院更新并能生成身体的所有器官和组织,像眼睛、鼻子、心脏、骨骼等,最终发育为一个人体。人从出生一直到成年后,体内仍然有干细胞,这就是成体干细胞。成体干细胞具有修复损伤和自我更新的功能。

所谓的干细胞美容,一种就是往体内的有关部位注射干细胞,另一种是通过外界给予特定的部位涂抹一些具有活性肽类的小分子物质,以刺激“唤醒”或营养表皮或真皮干细胞。前者注射用干细胞的来源主要是从流产的胚胎中提取的,其中难免在提取技术中将一些小分子的病毒未彻底灭活,如肝炎病毒、梅毒,艾滋病毒等带入人体,还有,如果没有经过配型就直接注射胚胎干细胞,容易引起免疫排斥反应。此外,这种干细胞进入体内发育成熟,会攻击受者的皮肤、肝脏、肾脏等,导致组织器官受损。中科院院士、细胞生物学家翟中和院士说:“早期的胚胎干细胞容易发生癌变,可能造成细胞恶性转化。而且直接把干细胞拿来移植,还存在着生物安全、病毒感染的潜在风险,因为艾滋病等许多病毒都是通过母亲传播给婴儿的,由此可能传给受者。所以,直接注射胚胎干细胞是极不科学、也是极其危险的”。故国家卫生部、国家食品药品监督管理局从未发布过或批准过这类产品在市场中应用,就是考虑这方面的原因,因为此项技术还不成熟,还有许多伦理等方面的问题。目前在市场流通中所谓的注射用干细胞,都是私底下的暗中操作,并且都在所谓的民营医院、诊所、美容院等来操作的,安全性也得不到保障,在收费项目中也是未经物价部门核准过的价格,也就是说是违法操作,这些案例,在近年来的报道中也屡见不鲜。

干细胞可以被外界的物质激活并增加其的活性,这方面的理论和实验数据都已经得到证实。在干细胞美容方面,关注的是表皮干细胞,它是由胚胎干细胞分化而来,使表皮始终处于持续的增殖、分化和脱落状态,是各种表皮细胞的祖细胞,来源于胚胎的外胚层,具有双向分化的能力。一方面可向下迁移分化为表皮基底层,进而生成毛囊;另一方面则可向上迁移,并最终分化为各种表皮细胞。表皮干细胞位于皮肤基底层,目前认为,分裂时表皮干细胞产生子代干细胞和短暂扩充细胞。在健康个体,皮肤的完整性的保持是依靠表皮干细胞的自我更新及产生的子代细胞的终末分化来完成的。表皮干细胞终生都维持在正常水平,皮肤衰老的过程是表皮干细胞对增殖信号起反应的细胞数量减少的结果,可能是局部环境因素而不是干细胞自身因素对皮肤老化产生影响,如外源性信号的作用等。表皮干细胞被小分子的生物活性肽所唤醒的作用是:1、在表皮水平上:影响角化细胞的活性和生长因素,刺激角化细胞迁移和上皮化,刺激表皮细胞分化和矫正,强烈促进表皮修复和愈合。2、在真皮水平上:刺激成纤维细胞活性,增强细胞外基质收缩和构造,提供皮肤养分促进皮肤伤口愈合和功能再生。3、在皮肤整体水平上:增强对环境侵袭、紫外线、污染物、刺激物、敏化剂、炎性细胞的抵抗力,巩固、增强皮肤张肌,增强皮肤弹性,刺激疤痕组织褪色,减少瘢痕形成,延缓皮肤衰老。其主要机制有:①促进表皮和真皮层细胞(特别是成纤维细胞、上皮细胞、内皮细胞)增殖、分裂、分化,新生细胞增多,使皮肤增厚,逐渐恢复皮肤正常结构和生理功能;②促进胶原纤维、网状纤维、弹性纤维的形成,调节胶原蛋白和粘多糖的分泌,维持皮肤组织中水分含量和电解质代谢,改善萎缩皮肤的缺水状态,滋润皮肤组织;③通过对血管内皮细胞的作用,促进皮肤组织不断形成新的毛细血管。

在体外培养人体的上皮细胞、成纤维细胞、血管内皮细胞及角膜细胞的培养基中加入生物活性多肽,可显著加速这些细胞的分裂和增殖。通过小鼠、大鼠、家兔和小型猪等不同类别与等级的动物模型,观察到FGF等活性多肽具有显著诱导血管生发,促进体表创伤修复,加速创面愈合,减少瘢痕形成,表现在创面肉芽组织生成增多、增厚,胶原沉积增加,使上皮化速度加快,成纤维细胞成熟加快且数量增多,毛细血管胚芽模型增加,局部循环改善及愈合时间缩短等。

这类的活性肽原料,在药品中也有使用,可足以证明是安全的。中山大学的陆家海博士和他带领的团队,经过多年的研究,从在深海鱼的鱼卵中提取了三个分子量的活性肽(已获专利),其对人表皮干细胞的作用机理和动物模型的实验研究发现,具有多种重要的生物学效应和生理功能,在近七年多的实践和数千人次的应用中,发现本活性多肽有非常明显的改善不健康的皮肤状态,如皮肤皱纹、松弛、色斑、暗疮、肤色灰暗等,并且是极其安全的。这进一步说明生物活性多肽与皮肤细胞的生长、分裂、分化、增殖和迁移有关,它们能够提供皮肤养分,延缓皮肤衰老,促进皮肤创面修复。实验研究和临床应用均表明,将生物活性多肽添加到美容化妆品中,可以有效地与皮肤细胞发生作用,发挥其突出的美容护肤功效,对于护肤品功能提高具有重要意义。

干细胞可以美容吗?

可以

美容领域

人体的衰老,皱纹的出现,究其根源实质上都是细胞的衰老和减少。而细胞的衰老和减少则是由干细胞老化引起的。干细胞是各种组织细胞更新换代的种子细胞,是人体细胞的生产厂。

干细胞族群的老化严重减弱了其增殖和分化的能力,新生的细胞补充不足,衰老细胞不能及时被替代,全身各系统功能下降,让人一天天老去。

因为皮肤干细胞的衰老而无法及时更新,衰老的皮肤得不到修复,有了皱纹,干细胞美容原理是通过输注特定的多种细胞(包括各种干细胞和免疫细胞)。

激活人体自身的“自愈功能”,对病变的细胞进行补充与调控,激活细胞功能,增加正常细胞的数量,提高细胞的活性,改善细胞的质量,防止和延缓细胞的病变,恢复细胞的正常生理功能,从而达到疾病康复、对抗衰老的目的。

器官移植

干细胞的用途非常广泛,涉及到医学的多个领域。科学家已经能够在体外鉴别、分离、纯化、扩增和培养人体胚胎干细胞,并以这样的干细胞为“种子”,培育出一些人的组织器官。

干细胞及其衍生组织器官的广泛临床应用,将产生一种全新的医疗技术,也就是再造人体正常的甚至年轻的组织器官,从而使人能够用上自己的或他人的干细胞或由干细胞所衍生出的新的组织器官,来替换自身病变的或衰老的组织器官。

治疗肾病

干细胞移植治疗肾病的原理:因干细胞具有“无限”增殖,多向分化潜能,具有造血支持,免疫调控和自我复制等特点。可作为理想的“种子”细胞用于病变引起的组织器官损伤修复。

基础研究发现干细胞可分化成肾固有细胞,肾实质细胞等,所以干细胞移植后对肾脏功能具有良好的修复和重建作用。

扩展资料:

骨髓间充质干细胞(mesenchymal stem cells,MSC)是干细胞家族的重要成员,来源于发育早期的中胚层和外胚层。

骨髓间充质干细胞具有如下的优点:

具有强大的增殖能力和多向分化潜能,在适宜的体内或体外环境下不仅可分化为造血细胞,还具有分化为肌细胞、肝细胞、成骨细胞、软骨细胞、基质细胞等多种细胞的能力。

具有免疫调节功能,从而发挥免疫重建的功能。

干细胞的调控是指给出适当的因子条件,对干细胞的增殖和分化进行调控,使之向指定的方向发展。

干细胞培养的几个概念

金仁桃 章孝荣( 安徽农业大学畜牧水产学院 合肥230036 ) �� 自Evans和Kaufman(1981)从延迟着床的胚胎中分离出小鼠胚胎干细胞(embryonic stem cells, ES细胞)以来,ES细胞一直备受人们的关注��〔1〕�。1998年,由基隆公司资助的汤姆森研究小组在《科学》杂志上发表了关于人的ES细胞建立等一系列工作之后,基隆公司的股票更是狂升了6倍;1999年、2000年,干细胞研究两度被美国《科学》杂志推举为21世纪最重要的研究领域;1999年,美国《科学》杂志还将干细胞研究评为当年世界十大科学成就之首。由此足以显示干细胞的魅力,而干细胞之所以如此吸引人们的注意,主要是因为干细胞是一种全能性的细胞,可以自发分化形成多细胞结构,即胚胎小体(embryonic body,EB)。EB含外胚层、内胚层、中胚层三个胚层,胚胎小体继续分化可以形成多种细胞类型,包括血细胞、内皮细胞、肌细胞及神经元等。另外ES细胞在动物克隆生产、转基因动物生产、疾病研究模型及药物生产等诸多方面有着诱人的前景。本文主要就ES细胞在克隆动物生产的应用加以阐述。 �1 ES细胞克隆的理论依据 � ES细胞是从早期胚胎内细胞团(inner cell mass, ICM)和附植后原始生殖细胞(Primordial germ cells, PGCs)分离出来的一种细胞,它具有全能性(totipotenty)或多能性(pluripotency),可以发育为任何一种组织或器官的前体细胞,再由该前体细胞发育成功能细胞。正常的ES细胞可分化为两个子代干细胞,也可以分化一个子代干细胞和一个功能细胞。 这种分化是由干细胞内源性调控(主要是受干细胞内结构蛋白和多肽因子调控)和外源性调控(主要是由周围组织细胞及细胞外基质等调控)所影响。而最近Amato Giaccia 发现氧含量操纵干细胞的分化,为人们进一步利用干细胞提供了有益的提示。另一个重要发现就是Andrew E. Wurmser等发现成熟组织的干细胞仅仅是通过与现存细胞融合而形成其他组织,而非制造新细胞,那么对成熟组织的干细胞利用,将趋于更加谨慎��〔2〕�。这也更加提升了ES细胞的作用。 �ES细胞另外一个特点是它像正常的体细胞一样可以在体外进行增殖、克隆、冷冻、保存而保持不分化。这样就可以为人们提供大量的可利用的ES细胞。如每只实验动物一次可提供5000~6500个PGCs,然后在体外可培养成类ES细胞。现在人们可将ES细胞体外培养传至40~60代而不分化,而这样大量的细胞就为我们利用它奠定了基础。 �ES细胞具有可操作性。在体外人们可以对其进行遗传操作选择,如转基因、基因打靶、配合基因诱捕等一系列技术,再结合核移植技术,生产出人们所希望的动物。 �2 ES细胞克隆的可行性 � 克隆技术的原理是将供体细胞核移入去核的卵母细胞中,通过激活使其重新编程发育,从而产生新个体。目前体细胞克隆相对于ES细胞来说,存在有两个问题:一是体细胞在体外培养易变异。为避免这一缺点,目前较多使用新分离或传代较少的细胞。二是关于选用何部位的细胞。目前人们已使用了乳腺细胞、卵丘细胞、输卵管细胞、皮肤成纤维细胞、子宫上皮细胞、肌肉细胞、支持细胞、肝脏细胞、耳成纤维细胞、初乳中乳腺上皮细胞等。但到目前为止,还没有发现何种体细胞是最适合于核移植的,所用作核移植的细胞有的来自于胎儿,一般是成纤维细胞,也有来源于成体动物的。这主要是因为虽然从理论上讲,机体中的每一个细胞都是从受精卵分裂分化而来,而在机体内通过半保留复制方式,DNA信息被完整的传递下来,但从一个受精卵到机体的亿万个细胞,有些细胞的个别基因可能发生不可逆的丢失或重排,使用这样的细胞作核供体,就无法保证信息的完整性,这也可能是目前细胞克隆中普遍存在的克隆效率低,出生后的死亡或异常的原因之一。ES细胞的核移植虽然也同样需要在去核的卵细胞内重新编程,但是相对于体细胞克隆效率低、妊娠期间易流产来说,ES细胞的克隆效率要高得多,而且ES细胞的重新编程要容易得多。这也正如人们所假设的目前存活的克隆个体所用的供体核大多是源于动物组织的成体干细胞的核而非最终分化的细胞的核〔3〕�。 �随着对ES细胞研究的深入,人们已经在多种动物得到了ES细胞核移植的后代。Teruhiko Wakayama等采用长期传代(30代以上)的小鼠ES细胞克隆出了31只小鼠,其中14只存活〔4〕�; Campbell (1996、1995)分别将绵羊、山羊的类ES注射入去核卵母细胞,获重构胚,经核移植有活羊出生��〔5〕�。Michelle Sims和N.L First(1993)将培养6~101d牛的ICM细胞核移植到去核卵母细胞,卵裂率为70%,囊胚率为24%,经胚胎移植有13头妊娠,出生了4头牛犊��〔6〕�; Stice(1996)将牛的类ES细胞进行核移植,得到重构胚并移入受体牛子宫,发育至45天��〔7〕�;Cibelli利用转基因技术得到生殖系嵌合的牛;Shim(1997)和Piedrahita(1998),利用猪的PGCs建立多能干细胞系,并得到嵌合体猪。 �3 ES细胞克隆的意义 � ES细胞的核移植最基本的意义就在于,如果通过核移植能够产生完整的后代,而且具有和亲代一样的遗传特性,那么它就恰恰证实了ES细胞是具有全能性的一种细胞。ES细胞克隆和体细胞克隆一样,通过得到的大量具有亲代一样遗传特性的供体细胞,再利用核移植技术,可以提高优秀个体的繁殖效率,迅速扩充优秀个体的种群,为畜牧生产作出极大的贡献。 对于珍稀品种或濒临灭绝的物种来说,该项技术提供了一种可以挽救珍稀或濒危物种的机会。利用ES细胞水平上的基因操作相对于受精卵水平上的转基因更加容易,可以得出人们所需求的转基因动物,然后再运用核移植技术,即可得到大量的具有此基因表达的个体,同时这也是创造新物种的绝好机会。由于ES细胞具有自发融合的性质,由此可在细胞水平上操作, 完成新物种的创造,而这种新物种可能是自然交配无法得到的。人们曾将牛、绵羊及人的GH基因先后导入小鼠基因组,得到的转基因小鼠在快速生长期生长速度为对照组的4倍。另外,利用ES细胞核移植还可以一次得到大量同质的后代,为生物学研究提供了很好的模型。 4 目前存在的问题 � 由于ES细胞的发现至今也只有20多年的历史,因此人们对它的了解有限,限制了对它的利用,目前就干细胞的核移植来说,主要存在以下问题: �4.1 核移植技术本身还有许多理论有待完善,目前核移植的效率还很低,而对于像重构胚的发育与着床,核质互作与协调等理论还需要人们作进一步的深入研究。 �4.2 ES细胞建系的技术还不成熟。目前广泛使用的饲养层是小鼠成纤维细胞无限系(STO)或小鼠胚胎成纤维细胞(Primary Mouse Embryo Firbroblasts, PMEF)制备而成,主要是利用其细胞分泌的生长因子FGF和抑制细胞分化的因子LIF共同作用,保持干细胞在体外克隆而不分化,然后加入一些其它的物质。即便如此,目前其建系的效率仍不是很高,特别在国内,能够得到大家畜的类ES的都不是很多,而且得到传代次数较少。人们目前尝试了使用其它的培养基,如大鼠成纤维细胞条件培养基、山羊输卵管上皮培养基、绵羊输卵管上皮培养基、绵羊子宫上皮培养基、山羊子宫上皮培养基、牛的颗粒细胞培养基、牛子宫成纤维细胞培养基、胎牛的睾丸、肾、肝成纤维细胞培养基。Meinecke Tillmann(1996)发现胎牛的成纤维细胞对绵羊的ICM和ES细胞增殖有利。而Piedrahitat等采用猪胎儿成纤维细胞和上皮细胞作为饲养层,结果失败。Strojek等(1990)认为,初步培养囊胚时,使用猪子宫成纤维细胞饲养层可以促进囊胚的贴壁和ICM克隆的形成。此时若用STO作饲养层,尽管猪囊胚可以附着在STO上,但ICM不增殖,但以后的传代只需要STO进行。可见对于饲养层的选择,目前仍有待人们的进一步发现。对于ES细胞的建系,人们还发现,ES细胞必须保持一定的浓度,这是因为ES细胞能够从培养基中摄取营养的同时,也要向培养基中排出自己的分泌和代谢产物和其它一些物质,这些分泌物中,有促进细胞生长的物质,有人就称之为促克隆生长物质。 �ES细胞应用范围是很广的,对于核移植的应用仅是其一部分。例如,利用ES细胞的全能性,进行定向诱导分化,再在细胞水平上进行药物的测试,可以极大提高药物的检测进度;利用ES细胞可建立人类遗传病研究的动物模型等。可以说,对于干细胞的研究方兴未艾。 � 参考文献 �〔1〕Evans M J, Kaufman M H. Establishment in Culture of Pluripotential Cells from mouse embryos〔J〕. Nature, 1981, 292(9): 154~156 �〔2〕Andrew E. Wurmser, Fred H.Gage. Cell fusion causes confusion〔J〕. Nature, 2002,416,485~491 �〔3〕Konrad Hochedlinger, Rudolf Jaenisch. Monoclonal mice generated by nuclear transfer from mature B and T doner cells〔J〕. Nature, 2002,415,1035~1038 �〔4〕Wakayama T, Rodriguez I, Perry AC, et al. Mice cloned from embryonic stem cells〔J〕. Proc Natl Acad Sci USA, 1990,96(26):14984~14989 �〔5〕Campbell.K.H.S, Mc whiir,J, Riechie.W.A, et al. Sheep cloned by nuclear transfer from a cuctured cell line〔J〕. Natrue,1996,38(7):64~66 �〔6〕Sims M.M, FirsA NI. Production of fetuses from totipotent cultured bovine inner cell mass cells〔J〕. Theriogenology, 1993,39:313 �〔7〕Stice SL, strolchonko NS.Pluriopotent bovine embryonic cell lines directed embryonic development following nuclear transfer biology of Reproduction〔J〕. Theriogenology, 1996,54:100~110

医学细胞生物学名词解释重点

细胞生物学名词解释

1. 细胞(cell)是组成包括人类在内的所有生物体的基本单位,这一基本单位的含义即包括结构上的,也包括功能上的。

2. 细胞生物学(cell biology)是在细胞水平上研究生物体的生长、运动、遗传、变异、分化、衰老、死亡等生命现象的学科。

3. 医学细胞生物学(medical cell biology)以人体或医学为对象的细胞生物学研究或学科。

4. 原核细胞(prokaryotic cell)是组成原核生物的细胞,这类细胞主要特征是细胞内没有分化为以膜为基础的具有专门结构与功能的细胞器和细胞核膜,且遗传信息量小,因此进化地位较低。

5. 真核细胞(eukaryotic cell)指含有真核(被核膜包围的核)的细胞,主要特征是有细胞膜、发达的内膜系统和细胞骨架体系。

6. 生物大分子(biological macromolecules)也称多聚体,由许多小分子单体通过共价键连接而成,相对分子质量比较大,包括蛋白质、核酸和多糖等。

7. 多肽链(polypeptide chain)多个氨基酸通过肽键组成的肽称为多肽链。

8. 细胞蛋白质组(proteome)将细胞内基因活动和表达后所产生的全部蛋白质作为一个整体,研究在个体发育的不同阶段,在正常或异常情况下,某种细胞内所有蛋白质的种类、数量、结构和功能状态,从而阐明基因的功能。

9. 拟核(nucleoid)原核细胞没有核膜包被的细胞核,也没有核仁,DNA位于细胞中央的核区就称为拟核。

10. 质粒(plasmid)很多细菌除了基因组DNA外,还有一些小的双链环形DNA分子,称为质粒。

11. 细胞膜(cell membrane)又称质膜,是指围绕在细胞最外层,由脂质、蛋白质和糖类所组成的生物膜。

12. 生物膜(biological membrane)人们把生物膜和细胞内各种模性结构统称为生物膜。

13. 单位膜(unit membrane)生物膜在电镜下呈现出较为一致的3层结构,即电子致密度高的内、外两层之间夹着电子密度较低的中间层。

14. 脂质体(liposome)脂质体是脂质分子在水相中形成的一种自我封闭的稳定的脂质双层膜。

15. 细胞外被(cell coat)细胞外被即为细胞膜中糖蛋白和糖脂伸出细胞外表面分支或不分支的寡糖链,其蛋白质和脂质部分参加了细胞膜本身的构造。

16. 细胞表面(cell surface)细胞膜、细胞外被、细胞内面的胞质溶胶、各种细胞连接结构和细胞膜的一些特化结构统称为细胞表面。

17. 内膜系统(endomembrane system)指真核细胞内在结构、功能及发生上有一定联系的有膜构成的细胞器。

18. 初级溶酶体(primary lysosome)只含水解酶而没有底物的溶酶体称为初级溶酶体。

19. 次级溶酶体(secondary lysosome)初级溶酶体与底物结合后的溶酶体称为次级溶酶体。

20. 残质体(residue body)吞噬溶酶体到达终末阶段,水解酶活性下降,还残留一些未被消化和分解的物质,形成在电镜下电子密度高、色调较深的残余物,这时的溶酶体称为残质体。

21. 类核体(nucleoid)有的过氧化物酶体中央含有电子密度高、呈规则形的结晶状结构,称类核体,实质是尿酸氧化酶的结晶。

22. 微粒体(microsome)利用蔗糖密度梯度离心法得到的由内质网碎片组成的封闭小泡。

23. 线粒体(mitochondrion)是细胞进行生物氧化和能量转换的主要场所,被称为能量转换器,细胞生命活动所需能量的80﹪由线粒体提供,所以线粒体被比喻为细胞的“动力工厂”。

24. 基粒(elementary particle)又称ATP合酶复合体,是产生ATP的部位,形态上分为三部分:头部,突出于内腔中,具有ATP酶活性,能催化ADP磷酸化生成ATP;柄部,连接头部与基部;基部,嵌入内膜内。

25. 嵴内空间(intracristal space)线粒体由于嵴向内腔突进造成的外腔向内伸入的部分称为嵴内空间。

26. 嵴间腔(intercristal space)线粒体嵴与嵴之间部分称为嵴空间。

27. 基质导入序列(matrix-targeting sequence,WTS)又称导肽,是输入线粒体的蛋白质在其N端具有的一段氨基酸序列,能够被线粒体膜上的受体识别并结合,从而定向蛋白质的转运。

28. 核糖体(ribosome)是由rRNA和蛋白质共同组成的非膜性细胞器,是细胞内蛋白质合成的场所。

29. 多聚核糖体(polyribosome)蛋白质合成时,多个核糖体结合到1个mRNA分子上,成串排列,形成蛋白质合成的功能单位,称为多聚核糖体。

30. 细胞骨架(cytoskeleton)是细胞内蛋白质成分组成的一个复合网架系统,包括微管、微丝和中间丝。

31. 微管组织中心(microtuble organizing center,MTOC)包括中心体、基体和着丝点等,它们提供了微管组装所需要的核心,在微管装配过程中起重要作用。

32. 动态微管(dynamic microtuble)细胞中有的微管存在时间很短,发生快速组装和去组装,称动态微管,如纺锤体。

33. 染色质(chromatin)是细胞核内能被碱性染料着色的物质,也是遗传性息的载体。

34. 染色体(chromosome)当细胞进入有丝分裂时,伸展、弥散的丝状染色质高度折叠、盘曲而凝缩成条状或棒状的特殊形态,称为染色体。

35. 核孔复合体(nuclear pore complex)核孔并非单纯的孔道,而是一个复杂的盘状结构体系,每个复合体由一串大的排列成八角形的蛋白质颗粒组成,中央是含水的通道。

36. 核小体(nucleosome)是构成染色质的基本单位结构。每个核小体由5种组蛋白和200bp左右的DNA组成,其中H2A、H2B、H3、H4各两分子形成八聚体,构成核心颗粒。DNA分子以左手螺旋缠绕在核心颗粒表面,每圈约80bp,共1.75圈,约146bp,相邻核心颗粒之间为一段60bp的连接DNA,H1位于DNA进出核心颗粒的结合处,功能与染色质的浓缩有关,形成直径为11nm的核小体。

37. 常染色质(euchromatin)指间期细胞核内染色质纤维压缩程度低,处于伸展状态,用碱性染料染色时着色浅的染色体。

38. 异染色质(heterochromatin)指间期细胞核内,染色质纤维压缩程度高,处于聚缩状态的染色质组分,碱性染料染色较深的组分,分结构和兼性异染色质。

39. 端粒(telomere)是染色体末端特化部位,具有维持染色体结构稳定性的作用,端粒DNA为高度重复DNA序列,富含GC。

40. 核仁组织者区(nucleolair organizing region,NOR)位于某些染色体的次缢痕处,具有缔合核仁的功能,称为核仁组织者区,即NOR。

41. 核型(karyotype)根据染色体的相对大小、着色粒的位置、臂的长短、次缢痕及随体的有无乃至带型等特征,把某种生物体细胞中的全套染色体按照同源染色体配对,依次排列起来,就构成了这一个体的核型。

42. 核骨架(nuclear skeleton)也称核基质,是间期细胞核内,除去染色质和核仁之外的网架体系和均质物质。其基本形态与细胞质内的细胞骨架相似,且在结构上有一定的联系,因此也称为核骨架。与DNA复制和染色体的构建有关。核骨架由3~30um的蛋白纤维和一些颗粒结构组成,主要成分是蛋白质,还含少量的RNA和DNA。核基质可能参与染色体DNA的包装和构建、DNA复制、基因表达以及核内的一系列生物活动。

43. 细胞外基质(extracellular matrix,ECM)是基体发育过程中,由细胞合成并分泌到细胞外的生物大分子构成德纤维网状物质,分布于细胞与组织之间、细胞周围或形成上皮细胞的基膜,将细胞与细胞或细胞与基膜相联系,构成组织与器官,使其连成有机整体。为细胞的生存及活动提供适宜的场所,并通过信号转导系统影响细胞的形态、代谢、功能、迁移、增殖和分化。

44. 胶原(collagen)是动物体内含量最丰富的蛋白质,约含人体蛋白质总量的30%以上。它遍布于体内各种器官和组织,是细胞外基质中的框架结构,可由成纤维细胞、软骨细胞、成骨细胞及某些上皮细胞合成并分泌到细胞外。

45. 前胶原(procollagen)是指带有前肽的3股螺旋胶原分子。

46. 纤连蛋白(fibronectin.FN)是一种大型的糖蛋白,存在于所有脊椎动物。以可溶的形式存在于血浆及各种体液中,以不溶的形式存在于细胞外基质及细胞表面,可将细胞连接到细胞外基质上。

47. 层粘连蛋白(laminin)是一种大型的糖蛋白,与IV胶原一起构成基膜,是胚胎发育过程中出现最早的细胞外基质成分。

48. 氨基聚糖(glycosaminoglycan,GAC)是重复二塘单位构成德无分支长链多糖,二糖单位通常由氨基己糖和糖醛酸组成,但硫酸角质素中糖醛酸由半乳糖代替。

49. 蛋白聚糖(proteoglycan)是氨基聚糖(除透明质酸外)与线性多肽形成的共价结合物,能形成水性的胶状物。

50. 锚定依赖性(anchorage dependence)正常真核细胞除成熟血细胞外,大多需黏附于细胞外基质才能抑制凋亡而存活,称为锚定依赖性。

51. 基膜(basement membrane)是上皮细胞下方一层柔软的特化的细胞外基质,也存在于肌肉、脂肪和神经膜细胞周围。它不仅起保护和过滤的作用,还决定细胞的极性,影响细胞的代谢、存活、迁移、增殖和分化。

52. 被动运输(passive transport)物质顺浓度梯度,从高浓度到低浓度运输,不消耗能量。

53. 单纯运输(simple diffusion)不需要膜运输蛋白帮助,不消耗能量,物质从高浓度到低浓度运输。

54. 帮助运输(facilitated diffusion)借助于细胞膜上载体蛋白的构象改变而顺浓度的物质运输方式。

55. 协同运输(coupled transport)载体蛋白在运转一种溶质分子的同时或随后转运另一种溶质分子。

56. 主动运输(active transport)物质逆浓度梯度,从低浓度到高浓度运输,消耗能量。

57. 结构性分泌途径(constitutive pathway of secretion)分泌蛋白合成后,立即包装入高尔基复合体的分泌泡中,然后迅速带到细胞膜处排出。

58. 调节性分泌途径(regulated pathway of secretion)分泌蛋白或小分子合成后,储存在分泌泡中。只有当接受细胞外信号的刺激时,分泌泡才移到细胞膜处,将分泌泡中的物质排出。

59. 信号肽(signal peptide)是位于蛋白质上的一段连续氨基酸序列,一般有15~60个残基,在引导蛋白质到达目的地后被切除。

60. 信号斑(signal patch)是位于蛋白质不同部位的氨基酸序列,在多肽链折叠后形成的一个斑块区,它是一种三维结构。

61. 信号识别颗粒(signal recognition particle,SRP)是由6个多肽亚单位和1个分子7SrRNA组成的11S核糖体蛋白。它既能识别特异的信号肽,又可以与核糖体的A位点结合。

62. 细胞通讯(cell communication)是指在多细胞生物的细胞社会中,细胞间或通过高度精确和高效发送与接收信息的通讯机制,并通过放大引起快速的细胞生理反应,或者引起成为基因活动,尔后发生一系列的细胞生理活动来协调各组织活动,使之成为生命的统一整体对多变的外界环境作出综合反应。

63. 信号转导(signal transduction)指细胞外因子通过与受体(膜受体或核受体)结合,引起细胞内的一系列生物化学反应以及蛋白间相互作用,直至细胞生理反应所需基因开始表达、各种生物学效应形成的过程

64. 信号分子(signaling molecules)是指生物体内的某些化学分子,即非营养物,又非能源物质和结构物质,而且也不是酶,它们主要是用来在细胞间和细胞内传递信息,如激素、神经递质、生长因子等统称为信号分子,它们的唯一功能是同细胞受体结合,传递细胞信息。

65. 受体(receptor)是指任何能够同激素、神经递质、药物或细胞内的信号分子结合并能引起细胞功能改变的生物大分子,通常是指位于细胞膜表面或细胞内与信号分子结合的蛋白质。

66. 离子通道偶联受体(into-channel linked receptor)具有离子通道作用的细胞质膜受体称为离子通道受体。

67. G蛋白偶联受体(G-protein linked receptor)配体与受体结合后激活相邻的G蛋白,被激活的G蛋白又可激活或抑制一种产生特异第二信使的酶活离子通道,引起膜电位的改变。由于这种受体参与的信号转导作用要与GTP结合的调节蛋白相偶联,因此它称为G蛋白偶联受体。G蛋白偶联受体是最大的一类细胞表面受体。

68. 酶联受体(enzyme linked receptor)这种受体蛋白即是受体,又是酶。一旦被配体激活既具有酶活性并将信号放大,又称催化受体。酶联受体也是跨膜蛋白,细胞内结构域常常具有某种酶的活性,故称为酶联受体。按照受体的细胞内结构域是否具有酶活性将此类受体分成两大类:缺少细胞内催化活性的酶联受体和具有细胞内催化活性的受体。

69. 信号级联放大(signaling cascade)从细胞表面受体接收外部信号到最后作出综合性应答是一个将信号逐步放大的过程,称为信号的次级联放大反应。组成次级联反应的各个成员称为一个级联,主要是由磷酸化和去磷酸化的酶组成。

70. 第二信使(second messengers)细胞表面受体接受细胞外信号后转换而来的细胞内信号称为第二信使。细胞内有5种最重要的第二信使:cAMP、cGMP、1,2-二酰甘油、1,4,5-三磷酸肌醇、Ca2+等。

71. GTP结合蛋白(GTP binding protein,G蛋白)与GTP或GDP结合的蛋白质,又叫鸟苷酸结合调节蛋白。从组成上看,有单体G蛋白(一条多肽链)和多亚基G蛋白(多条多肽链组成)。G蛋白参与细胞的多样生命活动,如细胞通讯、核糖体与内质网的结合、小泡运输、蛋白质合成等。

72. 腺苷酸环化酶(adenylate cyclase,AC)是膜整合蛋白,它的N端和C端都朝向细胞质。腺苷酸环化酶在膜的细胞质面有两个催化结构域,还有两个膜整合区,每个膜整合区分别有6个跨膜的a螺旋。哺乳动物中已发现6个腺苷酸环化酶异构体。由于腺苷酸环化酶能够将ATP转成cAMP,引起细胞的信号应答,因此,腺苷酸环化酶是G蛋白偶联系统中的效应物。

73. 钙调蛋白(calmodulin)是真核生物细胞中的胞质溶胶蛋白,每个末端有两个Ca2+结构域,每个结构域可以结合一个Ca2+。这样,一个钙调蛋白可以结合4个Ca2+,钙调蛋白与Ca2+结合后的构型相当稳定。在非刺激的细胞中钙调蛋白与Ca2+结合的亲和力很低。如果由于刺激使细胞中Ca2+浓度升高时,Ca2+同钙调蛋白结合形成Ca2+-钙调蛋白复合物,就会引起钙调蛋白构型的变化,增强了钙调蛋白与许多效应物结合的亲和力。

74. SH结构碱(SH domain)SH结构域是“Src同源结构域”(Src homology domain)的缩写(Src是一种癌基因,最初在Rous sarcoma病毒中发现)。这种结构域是能够与受体酪氨酸激酶磷酸化残基紧紧结合,形成多蛋白的复合体进行信号传导。

75. Ras蛋白(Ros protein)Ras是大鼠肉瘤(rat sarcoma,Ras)的英文缩写。Ras蛋白质是原癌基因c-ras的表达产物,属单体GTP结合蛋白,具有弱的GTP酶活性。

76. Grb2蛋白(growth factor receptor-bound protein 2)Grb2是生长因子受体结合蛋白2,又叫Ash蛋白。该蛋白参与细胞内各种受体激活后的下游调节,它能够直接与激活的表皮生长因子(EGF)受体磷酸化的酪氨酸结合,参与EGF受体介质的信号转导,也能通过与Shc磷酸化的酪氨酸结合间接参与由胰岛素受体介导的信号转导。Grb2蛋白含有一个SH2结构域和两个SH3结构域,属SH蛋白。

77. Sos蛋白是编码鸟苷释放蛋白的基因sos的产物(sos是son of sevenless的缩写)。Sos蛋白在Ras信号转导途径中的作用是促进Ras释放GDP,结合GTP,使Ras蛋白由非活性状态变为活性状态,所以Sos蛋白是Ras激活蛋白。Sos蛋白不含SH结构域,不属于SH蛋白。

78. 信号趋异(divergence)是指同一种信号与受体作用后在细胞内分成几个不同的信号途径进行传播,最典型的是受体酪氨酸激酶的信号转导。

79. 窜扰(crosstalk)是指不同信号传导途径间的相互影响,即通常所说的“相互作用”(interaction)。

80. 受体钝化(receptor desensitization)受体对信号分子失去敏感性称为受体钝化,一般是通过对受体的修饰进行钝化的。如肾上激素受体在丝氨酸和苏氨酸残基磷酸化后,则失去对肾上腺素的信号转导作用。分为同源钝化(homologousdesensitization)和异源钝化(heterologousdesensitization)。

81. 受体减量调节(receptor down-regulation)通过内吞作用减少质膜中受体量来调节信号传导,称为受体减量调节。

82. 自养生物(autotroph)能够通过光合作用,将无机物转化为可被自身利用的有机物的生物,包括含叶绿素的植物和一些有光合作用的细菌。

83. 细胞生物(cellular respiration)细胞内特定的细胞器在O2的参与下,分解各种大分子产生CO2,同时将分解代谢所释放的能量储存于ATP中的过程,称细胞氧化。

84. 氧化磷酸化(oxidative phosphorylation)由高能底物水解放能,直接将高能磷酸键从底物转移到ATP上,使其磷酸化成为ATP的作用。

85. 电子传递呼吸链(electron transport respiratory chain)在内膜上有序地排列成相互关联的链状传递电子的酶体系,它们能够可逆地接收和释放H+和电子。

86. ATP合酶(ATP synthase)基粒位于线粒体的内膜上,由头部、柄部和基片组成,是生成ATP的关键部位,因此称为ATP合酶。

87. 细胞松弛素(cytochalasins)真菌产生的一种代谢物(生物碱),可以切断微丝并结合在微丝(+)端,阻抑肌动蛋白聚合,但对解聚没有影响。

88. 鬼笔环肽(phalloidin)由毒性蘑菇毒蕈产生的一种双环杆肽生物碱,与微丝有强亲和力,使肌动蛋白纤维稳定,抑制解聚,且只与F-肌动蛋白结合,不与G-肌动蛋白结合。

89. 肌球蛋白(myosin)与微丝运动有关的动力蛋白,分头部、颈部和尾部。头部能结合肌动蛋白和ATP。

90. 驱动蛋白(kinesin)与微丝运动有关的动力蛋白,分头部、颈部和尾部。头部是产生力的活性部位,尾部能与膜泡结合。

91. 有丝分裂器(mitotic apparatus)有丝分裂中期的一个动态结构,由纺锤体和星体组成。其中星体有3种微管组成;动力微管、极间微管和星体微管。

92. 转录(transcription)在细胞核中以DNA为模板合成mRNA的过程,成为转录。

93. 翻译(translasion)mRNA从细胞核进入细胞质,在核糖体上合成蛋白质的过程,称为翻译。

94. 转座子(transposon)即移动基因,是指可以从染色体的一个位置转移到另一个位置或在不同染色体之间移动的基因。

95. 重叠基因(overlapping gene)是指在同一段DNA序列中存在两个基因的核苷酸序列彼此重叠的现象。

96. 基因表达(gene expression)DNA分子中由4种碱基不同组合而构成的遗传信息通过转绿“传抄”给mRNA,进而mRNA通过遗传密码将其翻译成特定蛋白质氨基酸序列的过程,称为基因表达。

97. 遗传密码(genetic code)遗传信息由DNA通过碱基互补转录至mRNA后,mRNA分子上相邻的3个核苷酸能合成一种氨基酸或是终止信号者称为密码子,所有密码子统称为遗传密码。

98. 引发体(primosome)由6种蛋白与DNA单链结合所形成的引发前体和引物酶组装而成,能够识别DNA复制起点位置。

99. DNA复制体(replisome)是指在DNA复制过程中,在复制叉附近,形成的由两套DNA聚合酶Ⅲ全酶分子、引发体和螺旋酶构成的类似核糖体大小的复合体。

100. 转录子(transcription)DNA链上从启动子到终止子为止的长度称为一个转录单位,即转录子。

101. 模板链(template strand)在DNA的两条链中只有其中一条链可作为模板,这条链叫作模板链。又叫作义链。

102. 启动子(promoter)转录是从DNA模板上的特定部位开始的,这个部位也是RNA聚合酶结合的部位,称为启动子。

103. 中心法则(central dogma)是指细胞内遗传信息的流动方向。遗传信息的流动时从DNA转录至RNA,最后流向蛋白质;同时也包括mRNA通过反转录酶形成DNA的方式。

104. 细胞增殖(cell proliferation)细胞通过生长和分裂获得和母细胞一样遗传特性的子细胞,使细胞数目成倍增加的过程。

105. 细胞增殖周期(cell generation cycle)从亲代细胞分裂结束到子代细胞分裂结束之间的间隔时期。

106. 限制点(restriction point,R点)细胞周期中G1期的特殊调节点,在控制细胞增殖周期起到开和关的“阀门”作用。

107. 有丝分裂促进因子(mitosis-promoting factor,MPF)M期细胞质中存在的异二聚体,由调节细胞进出M期所必须的蛋白质激酶和细胞周期蛋白组成,通过促进靶蛋白的磷酸化调节细胞周期。

108. 纺锤体(mitotic spindle)有丝分裂前期,中心粒分别移向细胞两级,微管加速聚合,形成纺锤形结构,称为纺锤体。

109. 细胞周期蛋白(cyclin)是一类随细胞周期的变化呈周期性出现或消失的蛋白质,可以时相形地激活CDK,从而调控细胞周期。

110. 细胞分裂周期基因(cell division cycle,cdc)细胞内的与细胞周期运转和调控有关的基因,产物调节细胞周期的进程。

111. 原癌基因(proto-oncogene)正常细胞基因组中存在与病毒癌基因相似的一类基因,产物是正常细胞增殖所必不可少的,突变为癌基因则导致细胞生长失控。

112. 抑癌基因(tumor suppression oncogene)正常细胞中存在可抑制恶性增殖的一类基因,产物可以抑制细胞的生长和分裂。

113. 联会(synapsis)第1次减数分裂偶线期,同源染色体发生配对现象,称为联会。

114. 四分体(tetrad)同源染色体联会的结果是形成二价体,每个二价体都由两条同源染色体组成,这样一个二价体有4条染色单体,称为四分体。

115. 生长因子(growth factor,GF)通过与膜上受体相结合诱发一系列生理反应,对细胞的增殖活动进行调节的多肽类物质。

116. 抑素(chalone)是一类细胞中产生的对细胞增殖具有抑制作用的调节因子,有些是小分子可溶性蛋白,有些是糖蛋白。

117. 收缩环(contractile ring)有丝分裂末期,胞质分裂开始时,大量肌动蛋白和肌球蛋白在细胞膜下聚集形成收缩环。

118. 分裂沟(cleavage furrow)收缩环通过微丝滑动、直径逐渐变小、使细胞膜凹陷,产生与纺锤体轴相垂直的分裂沟。

119. 细胞分化(cell differentiation)细胞后代在形态、结构和功能上发生稳定性差异的过程称为细胞分化。

120. 细胞决定(cell determination)通常情况下,细胞在发生可识别的形态变化前,已经受到约束向着特定的方向分化,确定了未来的发育命运,因此细胞从分化方向确定开始到出现特异形态特征之前这一时期,称为细胞决定。

121. 细胞全能性(cell totipotency)是单个细胞在一定条件下增殖、分化发育成为完整个体的能力,具有这种能力的细胞称为全能型细胞(totipotent cell)

122. 管家基因(housekeeping gene)是维持细胞最低限度功能所不可缺少的基因,对细胞分化一般只有协助作用。

123. 奢侈基因(luxury gene)是指与各种分化细胞的特殊性状有直接关系的基因,丧失这类基因对细胞的生存并无直接影响。

124. 同源框基因(homeobox gene)凡是含有同源异型基因序列的基因,均称为同源框基因。

125. DNA甲基化(DNA methylation)是指DNA分子上的胞苷加上甲基形成甲基胞嘧啶的现象,特别多见于CG序列中。

126. 细胞诱导(cell induction)是指一部分细胞对邻近细胞的形态发生影响,并决定其分化方向的作用。

127. 细胞抑制(cell inhibition)是在胚胎发育中,分化的细胞受到邻近细胞产生抑制物质的影响,其作用与诱导相对。

128. 癌基因(oncogenes)是控制细胞生长和分裂的正常基因的一种突变形式,能引起正常细胞癌变。

129. 干细胞(stem cell)是处于分化过程中仍具有增殖分裂能力,并能分化产生一种以上的“专业”细胞的原始细胞。根据其存在的部位以及分化潜能的大小,将其分为胚胎干细胞和成体干细胞。胚胎干细胞是具有分化成为机体任何一种组织器官潜能的细胞,如囊胚内细胞团中的细胞;成体干细胞是存在于成熟个体各种组织器官中的干细胞,具有自我更新能力,但通常只能分化成为相应或相邻组织器官的专业细胞。

130. 成体干细胞(adult stem cell)是在成体组织中具有自我更新能力,能分化产生一种或一种以上组织细胞的未成熟细胞。例如造血干细胞、间充质干细胞、神经干细胞、表皮干细胞、肠干细胞、肝干细胞等。

131. 转分化(trans-differentiation)由一种组织类型的干细胞在适当条件下分化为另一种组织类型细胞的现象。

132. 不对称分裂(asymmetry division)是细胞分裂时产生异型的细胞,如两个子细胞一个是干细胞,而另一个是分化细胞。

133. 过渡放大细胞(transit amplifying cell)是介于干细胞和分化细胞之间的过渡细胞,其分裂较快,经若干次分裂后产生分化细胞,起作用是可以通过较少的干细胞产生较多的分化细胞。

134. 衰老(aging)又称老化,通常指在正常状况下生物发育成熟后,随年龄增加,自身功能减退,内环境稳定能力与应激能力下降,结构、组分逐步退行性变,趋向死亡的不可逆转的现象。

135. 自由基(free radical)是指在外层轨道上具有不成对电子的分子或原子基团,是一种高度活化的分子,它可夺取其他物质的电子,使该物质氧化,进而对细胞产生有害的生物效应。

发表评论

评论列表

  • 这篇文章还没有收到评论,赶紧来抢沙发吧~